84 research outputs found

    Analysis of isoplanatic high resolution stellar fields by Starfinder code

    Get PDF
    We describe a new code for the deep analysis of stellar fields, designed for Adaptive Optics Nyquist-sampled images with high and low Strehl ratio. The Point Spread Function is extracted directly from the image frame, to take into account the actual structure of the instrumental response and the atmospheric effects. The code is written in IDL language and organized in the form of a self-contained widget-based application, provided with a series of tools for data visualization and analysis. A description of the method and some applications to AO data are presented.Comment: 10 pages, 13 figures. Accepted for publication in Astron.& Astrophys. Sup. Se

    StarFinder: an IDL GUI based code to analyze crowded fields with isoplanatic correcting PSF fitting

    Full text link
    StarFinder is a new code for the deep analysis of stellar fields, designed for well-sampled images with high and low Strehl ratio. It is organized in the form of a self-contained IDL widget-based application, with a 'user-friendly' graphic interface. We give here a general description of the code along with some applications to real data with space-invariant Point Spread Function (PSF). We present also some methods to handle anisoplanatic effects in wide-field Adaptive Optics (AO)observations.Comment: 9 pages, to to be published on "Proceeedings of Adaptive Optical Systems Technology",Proc.of SPIE,Vol.4007,2000. In pres

    Optimization of cw sodium laser guide star efficiency

    Full text link
    Context: Sodium laser guide stars (LGS) are about to enter a new range of laser powers. Previous theoretical and numerical methods are inadequate for accurate computations of the return flux and hence for the design of the next-generation LGS systems. Aims: We numerically optimize the cw (continuous wave) laser format, in particular the light polarization and spectrum. Methods: Using Bloch equations, we simulate the mesospheric sodium atoms, including Doppler broadening, saturation, collisional relaxation, Larmor precession, and recoil, taking into account all 24 sodium hyperfine states and on the order of 100 velocity groups. Results: LGS return flux is limited by "three evils": Larmor precession due to the geomagnetic field, atomic recoil due to radiation pressure, and transition saturation. We study their impacts and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2a and D2b lines with 10-20% of the laser power in the latter). Conclusions: We strongly recommend the use of circularly polarized lasers and repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each line) should approximately equal the launched laser power in Watts divided by six, assuming a diffraction-limited spot size.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysics, AA/2009/1310

    Extragalactic Fields Optimized for Adaptive Optics

    Full text link
    In this paper we present the coordinates of 67 55' x 55' patches of sky which have the rare combination of both high stellar surface density (>0.5 arcmin^{-2} with 13<R<16.5 mag) and low extinction (E(B-V)<0.1). These fields are ideal for adaptive-optics based follow-up of extragalactic targets. One region of sky, situated near Baade's Window, contains most of the patches we have identified. Our optimal field, centered at RA: 7h24m3s, Dec: -1deg27'15", has an additional advantage of being accessible from both hemispheres. We propose a figure of merit for quantifying real-world adaptive optics performance, and use this to analyze the performance of multi-conjugate adaptive optics in these fields. We also compare our results to those that would be obtained in existing deep fields. In some cases adaptive optics observations undertaken in the fields given in this paper would be orders of magnitude more efficient than equivalent observations undertaken in existing deep fields.Comment: 28 pages, 15 figures, 1 table; accepted for publication in PAS
    corecore