3,759 research outputs found

    Topological interactions between ring polymers: Implications for chromatin loops

    Full text link
    Chromatin looping is a major epigenetic regulatory mechanism in higher eukaryotes. Besides its role in transcriptional regulation, chromatin loops have been proposed to play a pivotal role in the segregation of entire chromosomes. The detailed topological and entropic forces between loops still remain elusive. Here, we quantitatively determine the potential of mean force between the centers of mass of two ring polymers, i.e. loops. We find that the transition from a linear to a ring polymer induces a strong increase in the entropic repulsion between these two polymers. On top, topological interactions such as the non-catenation constraint further reduce the number of accessible conformations of close-by ring polymers by about 50%, resulting in an additional effective repulsion. Furthermore, the transition from linear to ring polymers displays changes in the conformational and structural properties of the system. In fact, ring polymers adopt a markedly more ordered and aligned state than linear ones. The forces and accompanying changes in shape and alignment between ring polymers suggest an important regulatory function of such a topology in biopolymers. We conjecture that dynamic loop formation in chromatin might act as a versatile control mechanism regulating and maintaining different local states of compaction and order.Comment: 12 pages, 11 figures. The article has been accepted by The Journal Of Chemical Physics. After it is published, it will be found at http://jcp.aip.or

    Investigation of the aerodynamic characteristics and wing-deployment transients of the NASA DL-4 body with a sailwing landing aid Final report

    Get PDF
    Aerodynamic characteristics and wing deployment transients of NASA DL-4 lifting body fitted with sailwing landing ai

    Pseudo-potential treatment of two aligned dipoles under external harmonic confinement

    Get PDF
    Dipolar Bose and Fermi gases, which are currently being studied extensively experimentally and theoretically, interact through anisotropic, long-range potentials. Here, we replace the long-range potential by a zero-range pseudo-potential that simplifies the theoretical treatment of two dipolar particles in a harmonic trap. Our zero-range pseudo-potential description reproduces the energy spectrum of two dipoles interacting through a shape-dependent potential under external confinement very well, provided that sufficiently many partial waves are included, and readily leads to a classification scheme of the energy spectrum in terms of approximate angular momentum quantum numbers. The results may be directly relevant to the physics of dipolar gases loaded into optical lattices.Comment: 9 pages, 4 figure

    Dipolar Bose gases: Many-body versus mean-field description

    Full text link
    We characterize zero-temperature dipolar Bose gases under external spherical confinement as a function of the dipole strength using the essentially exact many-body diffusion Monte Carlo (DMC) technique. We show that the DMC energies are reproduced accurately within a mean-field framework if the variation of the s-wave scattering length with the dipole strength is accounted for properly. Our calculations suggest stability diagrams and collapse mechanisms of dipolar Bose gases that differ significantly from those previously proposed in the literature

    Product state control of bi-alkali chemical reactions

    Full text link
    We consider ultracold, chemically reactive scattering collisions of the diatomic molecules KRb. When two such molecules collide in an ultracold gas, we find that they are energetically forbidden from reacting to form the trimer species K2_2Rb or Rb2_2K, hence can only react via the bond-swapping reaction 2KRb \to K2_2 + Rb2_2. Moreover, the tiny energy released in this reaction can in principle be set to zero by applying electric or microwave fields, implying a means of controlling the available reaction channels in a chemical reaction.Comment: 4 pages double column, 2 figures, 2 table

    p-wave Feshbach molecules

    Full text link
    We have produced and detected molecules using a p-wave Feshbach resonance between 40K atoms. We have measured the binding energy and lifetime for these molecules and we find that the binding energy scales approximately linearly with magnetic field near the resonance. The lifetime of bound p-wave molecules is measured to be 1.0 +/- 0.1 ms and 2.3 +/- 0.2 ms for the m_l = +/- 1 and m_l = 0 angular momentum projections, respectively. At magnetic fields above the resonance, we detect quasi-bound molecules whose lifetime is set by the tunneling rate through the centrifugal barrier
    corecore