17,385 research outputs found

    Searches for radio transients

    Full text link
    Exploration of the transient Universe is an exciting and fast-emerging area within radio astronomy. Known transient phenomena range in time scales from sub-nanoseconds to years or longer, thus spanning a huge range in time domain and hinting a rich diversity in their underlying physical processes. Transient phenomena are likely locations of explosive or dynamic events and they offer tremendous potential to uncover new physics and astrophysics. A number of upcoming next-generation radio facilities and recent advances in computing and instrumentation have provided a much needed impetus for this field which has remained a relatively uncharted territory for the past several decades. In this paper we focus mainly on the class of phenomena that occur on very short time scales (i.e. from \sim milliseconds to \sim nanoseconds), known as {\it fast transients}, the detections of which involve considerable signal processing and data management challenges, given the high time and frequency resolutions required in their explorations, the role of propagation effects to be considered and a multitude of deleterious effects due to radio frequency interference. We will describe the techniques, strategies and challenges involved in their detections and review the world-wide efforts currently under way, both through scientific discoveries enabled by the ongoing large-scale surveys at Parkes and Arecibo, as well as technical developments involving the exploratory use of multi-element array instruments such as VLBA and GMRT. Such developments will undoubtedly provide valuable inputs as next-generation arrays such as LOFAR and ASKAP are designed and commissioned. With their wider fields of view and higher sensitivities, these instruments, and eventually the SKA, hold great potential to revolutionise this relatively nascent field, thereby opening up exciting new science avenues in astrophysics.Comment: To appear in the special issue of the Bulletin of the Astronomical Society of India on Transients at different wavelengths, eds D.J. Saikia and D.A. Green. 21 pages, 5 figures. http://www.ncra.tifr.res.in/~bas

    Scaling of the risk landscape drives optimal life history strategies and the evolution of grazing

    Full text link
    Consumers face numerous risks that can be minimized by incorporating different life-history strategies. How much and when a consumer adds to its energetic reserves or invests in reproduction are key behavioral and physiological adaptations that structure much of how organisms interact. Here we develop a theoretical framework that explicitly accounts for stochastic fluctuations of an individual consumer's energetic reserves while foraging and reproducing on a landscape with resources that range from uniformly distributed to highly clustered. First, we show that optimal life-history strategies vary in response to changes in the mean productivity of the resource landscape, where depleted environments promote reproduction at lower energetic states, greater investment in each reproduction event, and smaller litter sizes. We then show that if resource variance scales with body size due to landscape clustering, consumers that forage for clustered foods are susceptible to strong Allee effects, increasing extinction risk. Finally, we show that the proposed relationship between consumer body size, resource clustering, and Allee effect-induced population instability offers key ecological insights into the evolution of large-bodied grazing herbivores from small-bodied browsing ancestors.Comment: 9 pages, 5 figures, 3 Supplementary Appendices, 2 Supplementary Figure

    Magnetization in electron- and Mn- doped SrTiO3

    Full text link
    Mn-doped SrTiO_3.0, when synthesized free of impurities, is a paramagnetic insulator with interesting dielectric properties. Since delocalized charge carriers are known to promote ferromagnetism in a large number of systems via diverse mechanisms, we have looked for the possibility of any intrinsic, spontaneous magnetization by simultaneous doping of Mn ions and electrons into SrTiO_3 via oxygen vacancies, thereby forming SrTi_(1-x)Mn_xO_(3-d), to the extent of making the doped system metallic. We find an absence of any enhancement of the magnetization in the metallic sample when compared with a similarly prepared Mn doped, however, insulating sample. Our results, thus, are not in agreement with a recent observation of a weak ferromagnetism in metallic Mn doped SrTiO_3 system.Comment: 10 pages and 4 figure

    Optimized Neural Networks to Search for Higgs Boson Production at the Tevatron

    Get PDF
    An optimal choice of proper kinematical variables is one of the main steps in using neural networks (NN) in high energy physics. Our method of the variable selection is based on the analysis of a structure of Feynman diagrams (singularities and spin correlations) contributing to the signal and background processes. An application of this method to the Higgs boson search at the Tevatron leads to an improvement in the NN efficiency by a factor of 1.5-2 in comparison to previous NN studies.Comment: 4 pages, 4 figures, partially presented in proceedings of ACAT'02 conferenc

    Pulsar Scintillation and the Local Bubble

    Get PDF
    We present here the results from an extensive scintillation study of twenty pulsars in the dispersion measure (DM) range 3 - 35 pc cm^-3 caried out using the Ooty Radio Telescope (ORT) at 327 MHz, to investigate the distribution of ionized material in the local interstellar medium. Observations were made during the period January 1993 to August 1995, in which the dynamic scintillation spectra of these pulsars were regularly monitored over 10 - 90 epochs spanning 100 days. Reliable and accurate estimates of strengths of scattering have been deduced from the scintillation parameters averaged out for their long-term fluctuations arising from refractive scintillation (RISS) effects. Our analysis reveals several anomalies in the scattering strength, which suggest tht the distribution of scattering material in the Solar neighborhood is not uniform. We have modelled these anomalous scattering effects in terms of inhomogeneities in the distribution of electron dnsity fluctuations in the local interstellar medium (LISM). Our model suggests the presence of a low density bubble surrounded by a shell of much higher density fluctuations. We are able to put constraints on geometrical and scattering properties of such a structure, and find it to be morphologically similar to the Local Bubble known from other studies.Comment: 35 pages, 12 figure

    Long-Term Scintillation Studies of Pulsars: III. Testing Theoretical Models of Refractive Scintillation

    Get PDF
    Refractive interstellar scintillation (RISS) is thought to be the cause behind a variety of phenomena seen at radio wavelengths in pulsars and compact radio sources. Though there is substantial observational data to support several consequences of it, the quantitative predictions from theories have not been thoroughly tested. In this paper, data from our long-term scintillation study of 18 pulsars are used to test the predictions. The fluctuations of decorrelation bandwidth (νd\nu_d), scintillation time scale (τd\tau_d) and flux density (F) are examined for their cross-correlations and compared with the predictions. The theory predicts a strong correlation between νd\nu_d and τd\tau_d, and strong anti-correlations between νd\nu_d and F, and τd\tau_d and F. For 5 pulsars, we see a reasonable agreement. There is considerable difficulty in reconciling the results for the rest of the pulsars. Our analysis shows the underlying noise sources can sometimes reduce the correlation, but cannot cause an absence of correlation. It is also unlikely that the poor flux correlations arise from a hitherto unrecognized intrinsic flux variations. For PSR B0834+06, which shows anomalous behaviour of persistent drift slopes, positive correlation is found between τd\tau_d and the drift-corrected νd\nu_d. Many pulsars show an anti-correlation between νd\nu_d and the drift slope, and this is in accordance with the simple models of RISS. The detections of correlated variations of observables and a reasonable agreement between the predicted and measured correlations for some pulsars confirm RISS as the primary cause of the observed fluctuations. However, the complexity seen with the detailed results suggests the necessity of more comprehensive theoretical treatments for describing refractive fluctuations and their correlations.Comment: 27 pages, 6 Figures, 6 Tables. Accepted for publication in The Astrophysical Journa

    Analysis of high load dampers

    Get PDF
    High load damping requirements for modern jet engines are discussed. The design of damping systems which could satisfy these requirements is also discusseed. In order to evaluate high load damping requirements, engines in three major classes were studied; large transport engines, small general aviation engines, and military engines. Four damper concepts applicable to these engines were evaluated; multi-ring, cartridge, curved beam, and viscous/friction. The most promising damper concept was selected for each engine and performance was assessed relative to conventional dampers and in light of projected damping requirements for advanced jet engines

    Angular Dependent Magnetization Dynamics of Kagome Artificial Spin Ice Incorporating Topological Defects

    Get PDF
    We report angular-dependent spin-wave spectroscopy on kagome artificial spin ice made of large arrays of interconnected Ni80Fe20 nanobars. Spectra taken in saturated and disordered states exhibit a series of resonances with characteristic in-plane angular dependencies. Micromagnetic simulations allow us to interpret characteristic resonances of a two-step magnetization reversal of the nanomagnets. The dynamic properties are consistent with topological defects that are provoked via a magnetic field applied at specific angles. Simulations that we performed on previously investigated kagome artificial spin ice consisting of isolated nanobars show characteristic discrepancies in the spin wave modes which we explain by the absence of vertices.Comment: 14 pages and 5 figure
    corecore