30 research outputs found

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications

    References

    No full text

    Analgesic Efficacy and Hematologic Effects of Robenacoxib in Mice.

    No full text
    NSAID analgesics may confound models that require inflammation to mimic disease development in humans. This effect presents a challenge for veterinary staff and investigators, because surgery is often necessary to create mouse models of disease and NSAID are first-line analgesics used to treat postoperative pain. We evaluated robenacoxib, a NSAID highly selective for cyclooxygenase 2, in a carrageenan paw edema (CPE) assay and surgical model of venous thrombosis (VT). We generated a mouse-specific dose-response curve by using the CPE assay for robenacoxib doses of 3.2, 10, 32 and 100 mg/kg SC. Electronic von Frey assay, calipers, and novel software for measuring open-field activity revealed that all robenacoxib doses provided, identified effective analgesia at 3 and 6 h, compared with saline. In addition, the 100-mg/kg dose had measurable antiinflammatory effects but yielded adverse clinical side effects. Because the 32-mg/kg dose was the highest analgesic dose that did not decrease paw swelling, we evaluated it further by using the same nociceptive and behavioral assays in addition to a novel nest-consolidation test, and assessment of blood clotting and hematologic parameters in the surgical VT model. A single preemptive dose of either 32 mg/kg SC robenacoxib or 5 mg/kg SC carprofen protected against secondary hyperalgesia at 24 and 48 h. Neither drug altered clot formation or hematology values in the VT model. The open-field activity software and our novel nest consolidation test both identified significant postoperative discomfort but did not differentiate between saline and analgesia groups. In light of these data, a single preemptive subcutaneous dose of 32 mg/kg of robenacoxib or 5 mg/kg of carprofen did not impede this VT mode but also failed to provide sufficient postoperative analgesia
    corecore