4 research outputs found

    Modeling Microstructure and Irradiation Effects

    Full text link

    Defect processes in MgAl2O4 spinel

    No full text
    In perfect normal MgAl2O4 spinel the Mg2+ ions occupy tetrahedral 8a sites and Al3+ ions occupy octahedral 16d sites. In reality some cations are exchanged between the cation sublattices forming pairs of antisite defects and thus a degree of "inversion". Here atomic simulation is used to investigate the influence that antisite defects have on the population's of other intrinsic defects, those associated with Schottky and Frenkel reactions. One consequence is that the total magnesium interstitial concentration is increased substantially over the aluminium interstitial concentration and the magnesium vacancy concentration is increased over the aluminium vacancy concentration but to a much smaller extent. The split structures of isolated interstitial defects and the stability of various defect clusters are also discussed. (c) 2007 Elsevier Masson SAS. All rights reserved

    Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores

    Get PDF
    This is an Open Access Article. It is published by Nature Publishing Group under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives
    corecore