158 research outputs found

    On tau-functions for the KdV hierarchy

    Get PDF
    For an arbitrary solution to the KdV hierarchy, the generating series of logarithmic derivatives of the tau-function of the solution can be expressed by the basic matrix resolvent via algebraic manipulations. Based on this we develop in this paper two new formulae for the generating series by introducing a pair of wave functions of the solution. Applications to the Witten--Kontsevich tau-function, to the generalized Br\'ezin--Gross--Witten (BGW) tau-function, as well as to a modular deformation of the generalized BGW tau-function which we call the Lam\'e tau-function are also given

    Classical hurwitz numbers and related combinatorics

    Get PDF
    We give a polynomial-time algorithm of computing the classical Hurwitz numbers Hg,d, which were defined by Hurwitz 125 years ago. We show that the generating series of Hg,d for any fixed g > 2 lives in a certain subring of the ring of formal power series that we call the Lambert ring. We then define some analogous numbers appearing in enumerations of graphs, ribbon graphs, and in the intersection theory on moduli spaces of algebraic curves, such that their generating series belong to the same Lambert ring. Several asymptotics of these numbers (for large g or for large d) are obtained

    An elementary approach to toy models for D. H. Lehmer's conjecture

    Full text link
    In 1947, Lehmer conjectured that the Ramanujan's tau function τ(m)\tau (m) never vanishes for all positive integers mm, where τ(m)\tau (m) is the mm-th Fourier coefficient of the cusp form Δ24\Delta_{24} of weight 12. The theory of spherical tt-design is closely related to Lehmer's conjecture because it is shown, by Venkov, de la Harpe, and Pache, that τ(m)=0\tau (m)=0 is equivalent to the fact that the shell of norm 2m2m of the E8E_{8}-lattice is a spherical 8-design. So, Lehmer's conjecture is reformulated in terms of spherical tt-design. Lehmer's conjecture is difficult to prove, and still remains open. However, Bannai-Miezaki showed that none of the nonempty shells of the integer lattice \ZZ^2 in \RR^2 is a spherical 4-design, and that none of the nonempty shells of the hexagonal lattice A2A_2 is a spherical 6-design. Moreover, none of the nonempty shells of the integer lattices associated to the algebraic integers of imaginary quadratic fields whose class number is either 1 or 2, except for \QQ(\sqrt{-1}) and \QQ(\sqrt{-3}) is a spherical 2-design. In the proof, the theory of modular forms played an important role. Recently, Yudin found an elementary proof for the case of \ZZ^{2}-lattice which does not use the theory of modular forms but uses the recent results of Calcut. In this paper, we give the elementary (i.e., modular form free) proof and discuss the relation between Calcut's results and the theory of imaginary quadratic fields.Comment: 18 page

    Duality for Jacobi group orbit spaces and elliptic solutions of the WDVV equations

    Full text link
    From any given Frobenius manifold one may construct a so-called dual structure which, while not satisfying the full axioms of a Frobenius manifold, shares many of its essential features, such as the existence of a prepotential satisfying the WDVV equations of associativity. Jacobi group orbit spaces naturally carry the structures of a Frobenius manifold and hence there exists a dual prepotential. In this paper this dual prepotential is constructed and expressed in terms of the elliptic polylogarithm function of Beilinson and Levin

    Local height probabilities in a composite Andrews-Baxter-Forrester model

    Full text link
    We study the local height probabilities in a composite height model, derived from the restricted solid-on-solid model introduced by Andrews, Baxter and Forrester, and their connection with conformal field theory characters. The obtained conformal field theories also describe the critical behavior of the model at two different critical points. In addition, at criticality, the model is equivalent to a one-dimensional chain of anyons, subject to competing two- and three-body interactions. The anyonic-chain interpretation provided the original motivation to introduce the composite height model, and by obtaining the critical behaviour of the composite height model, the critical behaviour of the anyonic chains is established as well. Depending on the overall sign of the hamiltonian, this critical behaviour is described by a diagonal coset-model, generalizing the minimal models for one sign, and by Fateev-Zamolodchikov parafermions for the other.Comment: 34 pages, 5 figures; v2: expanded introduction, references added and other minor change

    Spherical Casimir energies and Dedekind sums

    Full text link
    Casimir energies on space-times having general lens spaces as their spatial sections are shown to be given in terms of generalised Dedekind sums related to Zagier's. These are evaluated explicitly in certain cases as functions of the order of the lens space. An easily implemented recursion approach is used.Comment: 18 pages, 2 figures, v2:typos corrected, inessential equation in Discussion altered. v3:typos corrected, 1 reference and comments added. v4:typos corrected. Ancillary results added in an appendi

    Renormalization of Multiple qq-Zeta Values

    Full text link
    In this paper we shall define the renormalization of the multiple qq-zeta values (MqqZV) which are special values of multiple qq-zeta functions ζq(s1,...,sd)\zeta_q(s_1,...,s_d) when the arguments are all positive integers or all non-positive integers. This generalizes the work of Guo and Zhang (math.NT/0606076v3) on the renormalization of Euler-Zagier multiple zeta values. We show that our renormalization process produces the same values if the MqqZVs are well-defined originally and that these renormalizations of MqqZV satisfy the qq-stuffle relations if we use shifted-renormalizations for all divergent ζq(s1,...,sd)\zeta_q(s_1,...,s_d) (i.e., s1≤1s_1\le 1). Moreover, when \qup our renormalizations agree with those of Guo and Zhang.Comment: 22 pages. This is a substantial revision of the first version. I provide a new and complete proof of the fact that our renormalizations satisfy the q-stuffle relations using the shifting principle of MqZV

    Operator approach to analytical evaluation of Feynman diagrams

    Full text link
    The operator approach to analytical evaluation of multi-loop Feynman diagrams is proposed. We show that the known analytical methods of evaluation of massless Feynman integrals, such as the integration by parts method and the method of "uniqueness" (which is based on the star-triangle relation), can be drastically simplified by using this operator approach. To demonstrate the advantages of the operator method of analytical evaluation of multi-loop Feynman diagrams, we calculate ladder diagrams for the massless Ï•3\phi^3 theory (analytical results for these diagrams are expressed in terms of multiple polylogarithms). It is shown how operator formalism can be applied to calculation of certain massive Feynman diagrams and investigation of Lipatov integrable chain model.Comment: 16 pages. To appear in "Physics of Atomic Nuclei" (Proceedings of SYMPHYS-XII, Yerevan, Armenia, July 03-08, 2006
    • …
    corecore