3,636 research outputs found

    Retrospective Epidemiologic Analysis of Influenza Pandemics in Arkansas, A

    Get PDF
    This study compares influenza mortality in Arkansas during the pandemics of: 1918 (aka Spanish flu), 1957, 1968, and 2009 (H1N1, aka Swine flu). Death certificate and U.S. census data were gathered and analyzed for statistical differences in mortalities based on sex, age, and geographic regions of Arkansas for each pandemic. The geographic regions were defined by the five Public Health Units classified by the Arkansas Department of Health. Regional mortalities were also analyzed across all pandemics to investigate how the different pandemics affected each individual region. Chi-square analyses for each pandemic showed only the 1918 pandemic had statistical differences between male and female mortalities (p0.5). Data showed urban regions sustained higher proportional mortalities than rural regions. Over time, the four pandemics resulted in decreased flu mortalities throughout the state. Regional mortality rates suggest areas for increased public health efforts during future influenza outbreaks in Arkansas, and more efficient distribution of resources may reduce mortality rates of future pandemics

    Evaluation of Education and Other Influential Factors on the Perceptions of Influenza Vaccinations

    Get PDF
    Influenza is a potentially deadly contagious viral infection that attacks the respiratory system. The 1918 influenza pandemic infected approximately 1/3 of the world’s population and resulted in an estimated 50 million deaths globally. Research has led to the production of influenza vaccinations. Unfortunately, there continues to be influenza epidemics that are responsible for killing numerous people annually. One reason for the continued death toll from influenza is the lack of people receiving a yearly flu vaccination. In order to gain more public acceptance for influenza vaccinations, it is important to understand the factors influencing the choice to be vaccinated. A study was conducted on 191 undergraduate general psychology students at the University of Central Arkansas to test if specific factors determine the predictability of vaccination acceptance. Education and positive influential factors toward flu vaccinations are two important factors presented in the study that have influence on participants receiving the vaccine. The study results are beneficial in understanding why people reject flu vaccines and what can be done to reverse those decisions

    Relations between fusion cross sections and average angular momenta

    Get PDF
    We study the relations between moments of fusion cross sections and averages of angular momentum. The role of the centrifugal barrier and the target deformation in determining the effective barrier radius are clarified. A simple method for extracting average angular momentum from fusion cross sections is demonstrated using numerical examples as well as actual data.Comment: 16 REVTeX pages plus 8 included Postscript figures (uses the epsf macro); submitted to Phys. Rev. C; also available at http://nucth.physics.wisc.edu/preprint

    On the α\alpha-decay of deformed actinide nuclei

    Full text link
    α\alpha-decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semi-classical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which are essentially constant for all even--even actinide nuclei. These same amplitudes also give good results for the known anisotropic α\alpha-particle emission of the favored decays of odd nuclei in the same mass region. PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures uuencoded gz-compressed .tar file To appear in Physical Review Letter

    Longitudinal diffusion tensor imaging and neuropsychological correlates in traumatic brain injury patients

    Get PDF
    Traumatic brain injury (TBI) often involves focal cortical injury and white matter (WM) damage that can be measured shortly after injury. Additionally, slowly evolving WM change can be observed but there is a paucity of research on the duration and spatial pattern of long-term changes several years post-injury. The current study utilized diffusion tensor imaging to identify regional WM changes in 12 TBI patients and nine healthy controls at three time points over a four year period. Neuropsychological testing was also administered to each participant at each time point. Results indicate that TBI patients exhibit longitudinal changes to WM indexed by reductions in fractional anisotropy (FA) in the corpus callosum, as well as FA increases in bilateral regions of the superior longitudinal fasciculus (SLF) and portions of the optic radiation (OR). FA changes appear to be driven by changes in radial (not axial) diffusivity, suggesting that observed longitudinal FA changes may be related to changes in myelin rather than to axons. Neuropsychological correlations indicate that regional FA values in the corpus callosum and sagittal stratum (SS) correlate with performance on finger tapping and visuomotor speed tasks (respectively) in TBI patients, and that longitudinal increases in FA in the SS, SLF, and OR correlate with improved performance on the visuomotor speed (SS) task as well as a derived measure of cognitive control (SLF, OR). The results of this study showing progressive WM deterioration for several years post-injury contribute to a growing literature supporting the hypothesis that TBI should be viewed not as an isolated incident but as a prolonged disease state. The observations of long-term neurological and functional improvement provide evidence that some ameliorative change may be occurring concurrently with progressive degeneration

    Quantum Tunneling in Nuclear Fusion

    Get PDF
    Recent theoretical advances in the study of heavy ion fusion reactions below the Coulomb barrier are reviewed. Particular emphasis is given to new ways of analyzing data, such as studying barrier distributions; new approaches to channel coupling, such as the path integral and Green function formalisms; and alternative methods to describe nuclear structure effects, such as those using the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects, higher-order couplings, and shape-phase transitions are elucidated. The current status of the fusion of unstable nuclei and very massive systems are briefly discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13 Figures (postscript file for Figure 6 is not available; a hard copy can be requested from the authors). Full text and figures are also available at http://nucth.physics.wisc.edu/preprints

    A corresponding states approach to Small-Angle-Scattering for polydisperse ionic colloidal fluids

    Full text link
    Approximate scattering functions for polydisperse ionic colloidal fluids are obtained by a corresponding states approach. This assumes that all pair correlation functions gαβ(r)g_{\alpha \beta}(r) of a polydisperse fluid are conformal to those of an appropriate monodisperse binary fluid (reference system) and can be generated from them by scaling transformations. The correspondence law extends to ionic fluids a {\it scaling approximation} (SA) successfully proposed for nonionic colloids in a recent paper. For the primitive model of charged hard spheres in a continuum solvent, the partial structure factors of the monodisperse binary reference system are evaluated by solving the Orstein-Zernike (OZ) integral equations coupled with an approximate closure. The SA is first tested within the mean spherical approximation (MSA) closure, which allows analytical solutions. The results are found in good overall agreement with exact MSA predictions up to relevant polidispersity. The SA is shown to be an improvement over the ``decoupling approximation'' extended to the ionic case. The simplicity of the SA scheme allows its application also when the OZ equations can be solved only numerically. An example is then given by using the hypernetted chain (HNC) closure. Shortcomings of the SA approach, its possible use in the analysis of experimental scattering data and other related points are also briefly addressed.Comment: 29 pages, 7 postscript figures (included), Latex 3.0, uses aps.sty, to appear in Phys. Rev. E (1999

    SU(16) grandunification: breaking scales, proton decay and neutrino magnetic moment

    Full text link
    We give a detailed renormalization group analysis for the SU(16) grandunified group with general breaking chains in which quarks and leptons transform separately at intermediate energies. Our analysis includes the effects of Higgs bosons. We show that the grandunification scale could be as low as 108.5\sim 10^{8.5} GeV and give examples where new physics could exist at relatively low energy (250\sim 250 GeV). We consider proton decay in this model and show that it is consistent with a low grandunification scale. We also discuss the possible generation of a neutrino magnetic moment in the range of 101110^{-11} to 1010μB10^{-10}\mu_B with a very small mass by the breaking of the embedded SU(2)ν_\nu symmetry at a low energy.Comment: (16 pages in REVTEX + 6 figures not included) OITS-49
    corecore