832 research outputs found
Optimizing the process of product development by collaborating & thinking visually-co-creation within Howden
The paper explores the process of creating a bespoke New Product Development Procedure for the heavy engineering firm Howden through a collaborative Knowledge Transfer Partnership with the University of Strathclyde. The act of transferring knowledge was done by using a visual methodology and the paper explores the reasoning behind why using this methodology was so successful
Development of superconducting YBa2Cu3O(x) wires with low resistance electrical contacts
Materials exhibiting superconductivity above liquid nitrogen temperatures (77 K) will enable new applications of this phenomena. One of the first commercial applications of this technology will be superconducting magnets for medical imaging. However, a large number of aerospace applications of the high temperature superconducting materials have also been identified. These include magnetic suspension and balance of models in wind tunnels and resistanceless leads to anemometers. The development of superconducting wires fabricated from the ceramic materials is critical for these applications. The progress in application of a patented fiber process developed by Clemson University for the fabrication of superconducting wires is reviewed. The effect of particle size and heat treatment on the quality of materials is discussed. Recent advances made at Christopher Newport College in the development of micro-ohm resistance electrical contacts which are capable of carrying the highest reported direct current to this material is presented
Sequence Effects on DNA Entropic Elasticity
DNA stretching experiments are usually interpreted using the worm-like chain
model; the persistence length A appearing in the model is then interpreted as
the elastic stiffness of the double helix. In fact the persistence length
obtained by this method is a combination of bend stiffness and intrinsic bend
effects reflecting sequence information, just as at zero stretching force. This
observation resolves the discrepancy between the value of A measured in these
experiments and the larger ``dynamic persistence length'' measured by other
means. On the other hand, the twist persistence length deduced from
torsionally-constrained stretching experiments suffers no such correction. Our
calculation is very simple and analytic; it applies to DNA and other polymers
with weak intrinsic disorder.Comment: LaTeX; postscript available at
http://dept.physics.upenn.edu/~nelson/index.shtm
Body-assisted van der Waals interaction between two atoms
Using fourth-order perturbation theory, a general formula for the van der
Waals potential of two neutral, unpolarized, ground-state atoms in the presence
of an arbitrary arrangement of dispersing and absorbing magnetodielectric
bodies is derived. The theory is applied to two atoms in bulk material and in
front of a planar multilayer system, with special emphasis on the cases of a
perfectly reflecting plate and a semi-infinite half space. It is demonstrated
that the enhancement and reduction of the two-atom interaction due to the
presence of a perfectly reflecting plate can be understood, at least in the
nonretarded limit, by using the method of image charges. For the semi-infinite
half space, both analytical and numerical results are presented.Comment: 17 pages, 9 figure
Bending and Base-Stacking Interactions in Double-Stranded Semiflexible Polymer
Simple expressions for the bending and the base-stacking energy of
double-stranded semiflexible biopolymers (such as DNA and actin) are derived.
The distribution of the folding angle between the two strands is obtained by
solving a Schr\"{o}dinger equation variationally. Theoretical results based on
this model on the extension versus force and extension versus degree of
supercoiling relations of DNA chain are in good agreement with the experimental
observations of Cluzel {\it et al.} [Science {\bf 271}, 792 (1996)], Smith {\it
et al.} [{\it ibid.} {\bf 271}, 795 (1996)], and Strick {\it et al.} [{\it
ibid.} {\bf 271}, 1835 (1996)].Comment: 8 pages in Revtex format, with 4 EPS figure
Knotlike Cosmic Strings in The Early Universe
In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time
of the early universe are discussed. It has been revealed that the cosmic
strings can just originate from the zero points of the complex scalar
quintessence field. In these strings we mainly study the knotlike
configurations. Based on the integral of Chern-Simons 3-form a topological
invariant for knotlike cosmic strings is constructed, and it is shown that this
invariant is just the total sum of all the self-linking and linking numbers of
the knots family. Furthermore, it is also pointed out that this invariant is
preserved in the branch processes during the evolution of cosmic strings
Casimir-Polder forces: A non-perturbative approach
Within the frame of macroscopic QED in linear, causal media, we study the
radiation force of Casimir-Polder type acting on an atom which is positioned
near dispersing and absorbing magnetodielectric bodies and initially prepared
in an arbitrary electronic state. It is shown that minimal and multipolar
coupling lead to essentially the same lowest-order perturbative result for the
force acting on an atom in an energy eigenstate. To go beyond perturbation
theory, the calculations are based on the exact center-of-mass equation of
motion. For a nondriven atom in the weak-coupling regime, the force as a
function of time is a superposition of force components that are related to the
electronic density-matrix elements at a chosen time. Even the force component
associated with the ground state is not derivable from a potential in the
ususal way, because of the position dependence of the atomic polarizability.
Further, when the atom is initially prepared in a coherent superposition of
energy eigenstates, then temporally oscillating force components are observed,
which are due to the interaction of the atom with both electric and magnetic
fields.Comment: 23 pages, 3 figures, additional misprints correcte
Recommended from our members
Gas separations using inorganic membranes
This report summarizes the results from a research and development program to develop, fabricate, and evaluate inorganic membranes for separating gases at high temperatures and pressures in hostile process environments encountered in fossil energy conversion processes such as coal gasification. The primary emphasis of the research was on the separation and recovery of hydrogen from synthesis gas. Major aspects of the program included assessment of the worldwide research and development activity related to gas separations using inorganic membranes, identification and selection of candidate membrane materials, fabrication and characterization of membranes using porous membrane technology developed at the Oak Ridge K-25 Site, and evaluation of the separations capability of the fabricated membranes in terms of permeabilities and fluxes of gases
The Geometry of Soft Materials: A Primer
We present an overview of the differential geometry of curves and surfaces
using examples from soft matter as illustrations. The presentation requires a
background only in vector calculus and is otherwise self-contained.Comment: 45 pages, RevTeX, 12 eps figure
Tops and Writhing DNA
The torsional elasticity of semiflexible polymers like DNA is of biological
significance. A mathematical treatment of this problem was begun by Fuller
using the relation between link, twist and writhe, but progress has been
hindered by the non-local nature of the writhe. This stands in the way of an
analytic statistical mechanical treatment, which takes into account thermal
fluctuations, in computing the partition function. In this paper we use the
well known analogy with the dynamics of tops to show that when subjected to
stretch and twist, the polymer configurations which dominate the partition
function admit a local writhe formulation in the spirit of Fuller and thus
provide an underlying justification for the use of Fuller's "local writhe
expression" which leads to considerable mathematical simplification in solving
theoretical models of DNA and elucidating their predictions. Our result
facilitates comparison of the theoretical models with single molecule
micromanipulation experiments and computer simulations.Comment: 17 pages two figure
- …