506 research outputs found
A series solution and a fast algorithm for the inversion of the spherical mean Radon transform
An explicit series solution is proposed for the inversion of the spherical
mean Radon transform. Such an inversion is required in problems of thermo- and
photo- acoustic tomography. Closed-form inversion formulae are currently known
only for the case when the centers of the integration spheres lie on a sphere
surrounding the support of the unknown function, or on certain unbounded
surfaces. Our approach results in an explicit series solution for any closed
measuring surface surrounding a region for which the eigenfunctions of the
Dirichlet Laplacian are explicitly known - such as, for example, cube, finite
cylinder, half-sphere etc. In addition, we present a fast reconstruction
algorithm applicable in the case when the detectors (the centers of the
integration spheres) lie on a surface of a cube. This algorithm reconsrtucts
3-D images thousands times faster than backprojection-type methods
Local Asymmetry and the Inner Radius of Nodal Domains
Let M be a closed Riemannian manifold of dimension n. Let f be an
eigenfunction of the Laplace-Beltrami operator corresponding to an eigenvalue
\lambda. We show that the volume of {f>0} inside any ball B whose center lies
on {f=0} is > C|B|/\lambda^n. We apply this result to prove that each nodal
domain contains a ball of radius > C/\lambda^n.Comment: 12 pages, 1 figure; minor corrections; to appear in Comm. PDE
Performance evaluation of an emergency call center: tropical polynomial systems applied to timed Petri nets
We analyze a timed Petri net model of an emergency call center which
processes calls with different levels of priority. The counter variables of the
Petri net represent the cumulated number of events as a function of time. We
show that these variables are determined by a piecewise linear dynamical
system. We also prove that computing the stationary regimes of the associated
fluid dynamics reduces to solving a polynomial system over a tropical
(min-plus) semifield of germs. This leads to explicit formul{\ae} expressing
the throughput of the fluid system as a piecewise linear function of the
resources, revealing the existence of different congestion phases. Numerical
experiments show that the analysis of the fluid dynamics yields a good
approximation of the real throughput.Comment: 21 pages, 4 figures. A shorter version can be found in the
proceedings of the conference FORMATS 201
Inverse problem and Bertrand's theorem
The Bertrand's theorem can be formulated as the solution of an inverse
problem for a classical unidimensional motion. We show that the solutions of
these problems, if restricted to a given class, can be obtained by solving a
numerical equation. This permit a particulary compact and elegant proof of
Bertrand's theorem.Comment: 11 pages, 3 figure
Last passage percolation and traveling fronts
We consider a system of N particles with a stochastic dynamics introduced by
Brunet and Derrida. The particles can be interpreted as last passage times in
directed percolation on {1,...,N} of mean-field type. The particles remain
grouped and move like a traveling wave, subject to discretization and driven by
a random noise. As N increases, we obtain estimates for the speed of the front
and its profile, for different laws of the driving noise. The Gumbel
distribution plays a central role for the particle jumps, and we show that the
scaling limit is a L\'evy process in this case. The case of bounded jumps
yields a completely different behavior
Survival of near-critical branching Brownian motion
Consider a system of particles performing branching Brownian motion with
negative drift and killed upon hitting zero.
Initially there is one particle at . Kesten showed that the process
survives with positive probability if and only if . Here we are
interested in the asymptotics as \eps\to 0 of the survival probability
. It is proved that if then for all , exists and is a
travelling wave solution of the Fisher-KPP equation. Furthermore, we obtain
sharp asymptotics of the survival probability when and .
The proofs rely on probabilistic methods developed by the authors in a previous
work. This completes earlier work by Harris, Harris and Kyprianou and confirms
predictions made by Derrida and Simon, which were obtained using nonrigorous
PDE methods
Topological Force and Torque in Spin-Orbit Coupling System
The topological force and torque are investigated in the systems with
spin-orbit coupling. Our results show that the topological force and torque
appears as a pure relativistic quantum effect in an electromagnetic field. The
origin of both topological force and torque is the Zitterbewegung effect.
Considering nonlinear behaviors of spin-orbit coupling, we address possible
phenomena driven by the topological forces.Comment: 4 page
Future geodesic completeness of some spatially homogeneous solutions of the vacuum Einstein equations in higher dimensions
It is known that all spatially homogeneous solutions of the vacuum Einstein
equations in four dimensions which exist for an infinite proper time towards
the future are future geodesically complete. This paper investigates whether
the analogous statement holds in higher dimensions. A positive answer to this
question is obtained for a large class of models which can be studied with the
help of Kaluza-Klein reduction to solutions of the Einstein-scalar field
equations in four dimensions. The proof of this result makes use of a criterion
for geodesic completeness which is applicable to more general spatially
homogeneous models.Comment: 18 page
Parking functions, labeled trees and DCJ sorting scenarios
In genome rearrangement theory, one of the elusive questions raised in recent
years is the enumeration of rearrangement scenarios between two genomes. This
problem is related to the uniform generation of rearrangement scenarios, and
the derivation of tests of statistical significance of the properties of these
scenarios. Here we give an exact formula for the number of double-cut-and-join
(DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective
bijections between the set of scenarios that sort a cycle and well studied
combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure
Duality properties of Gorringe-Leach equations
In the category of motions preserving the angular momentum's direction,
Gorringe and Leach exhibited two classes of differential equations having
elliptical orbits. After enlarging slightly these classes, we show that they
are related by a duality correspondence of the Arnold-Vassiliev type. The
specific associated conserved quantities (Laplace-Runge-Lenz vector and
Fradkin-Jauch-Hill tensor) are then dual reflections one of the othe
- …