506 research outputs found

    A series solution and a fast algorithm for the inversion of the spherical mean Radon transform

    Full text link
    An explicit series solution is proposed for the inversion of the spherical mean Radon transform. Such an inversion is required in problems of thermo- and photo- acoustic tomography. Closed-form inversion formulae are currently known only for the case when the centers of the integration spheres lie on a sphere surrounding the support of the unknown function, or on certain unbounded surfaces. Our approach results in an explicit series solution for any closed measuring surface surrounding a region for which the eigenfunctions of the Dirichlet Laplacian are explicitly known - such as, for example, cube, finite cylinder, half-sphere etc. In addition, we present a fast reconstruction algorithm applicable in the case when the detectors (the centers of the integration spheres) lie on a surface of a cube. This algorithm reconsrtucts 3-D images thousands times faster than backprojection-type methods

    Local Asymmetry and the Inner Radius of Nodal Domains

    Full text link
    Let M be a closed Riemannian manifold of dimension n. Let f be an eigenfunction of the Laplace-Beltrami operator corresponding to an eigenvalue \lambda. We show that the volume of {f>0} inside any ball B whose center lies on {f=0} is > C|B|/\lambda^n. We apply this result to prove that each nodal domain contains a ball of radius > C/\lambda^n.Comment: 12 pages, 1 figure; minor corrections; to appear in Comm. PDE

    Performance evaluation of an emergency call center: tropical polynomial systems applied to timed Petri nets

    Full text link
    We analyze a timed Petri net model of an emergency call center which processes calls with different levels of priority. The counter variables of the Petri net represent the cumulated number of events as a function of time. We show that these variables are determined by a piecewise linear dynamical system. We also prove that computing the stationary regimes of the associated fluid dynamics reduces to solving a polynomial system over a tropical (min-plus) semifield of germs. This leads to explicit formul{\ae} expressing the throughput of the fluid system as a piecewise linear function of the resources, revealing the existence of different congestion phases. Numerical experiments show that the analysis of the fluid dynamics yields a good approximation of the real throughput.Comment: 21 pages, 4 figures. A shorter version can be found in the proceedings of the conference FORMATS 201

    Inverse problem and Bertrand's theorem

    Full text link
    The Bertrand's theorem can be formulated as the solution of an inverse problem for a classical unidimensional motion. We show that the solutions of these problems, if restricted to a given class, can be obtained by solving a numerical equation. This permit a particulary compact and elegant proof of Bertrand's theorem.Comment: 11 pages, 3 figure

    Last passage percolation and traveling fronts

    Get PDF
    We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida. The particles can be interpreted as last passage times in directed percolation on {1,...,N} of mean-field type. The particles remain grouped and move like a traveling wave, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. The Gumbel distribution plays a central role for the particle jumps, and we show that the scaling limit is a L\'evy process in this case. The case of bounded jumps yields a completely different behavior

    Survival of near-critical branching Brownian motion

    Full text link
    Consider a system of particles performing branching Brownian motion with negative drift μ=2ϵ\mu = \sqrt{2 - \epsilon} and killed upon hitting zero. Initially there is one particle at x>0x>0. Kesten showed that the process survives with positive probability if and only if ϵ>0\epsilon>0. Here we are interested in the asymptotics as \eps\to 0 of the survival probability Qμ(x)Q_\mu(x). It is proved that if L=π/ϵL= \pi/\sqrt{\epsilon} then for all xRx \in \R, limϵ0Qμ(L+x)=θ(x)(0,1)\lim_{\epsilon \to 0} Q_\mu(L+x) = \theta(x) \in (0,1) exists and is a travelling wave solution of the Fisher-KPP equation. Furthermore, we obtain sharp asymptotics of the survival probability when x<Lx<L and LxL-x \to \infty. The proofs rely on probabilistic methods developed by the authors in a previous work. This completes earlier work by Harris, Harris and Kyprianou and confirms predictions made by Derrida and Simon, which were obtained using nonrigorous PDE methods

    Topological Force and Torque in Spin-Orbit Coupling System

    Full text link
    The topological force and torque are investigated in the systems with spin-orbit coupling. Our results show that the topological force and torque appears as a pure relativistic quantum effect in an electromagnetic field. The origin of both topological force and torque is the Zitterbewegung effect. Considering nonlinear behaviors of spin-orbit coupling, we address possible phenomena driven by the topological forces.Comment: 4 page

    Future geodesic completeness of some spatially homogeneous solutions of the vacuum Einstein equations in higher dimensions

    Full text link
    It is known that all spatially homogeneous solutions of the vacuum Einstein equations in four dimensions which exist for an infinite proper time towards the future are future geodesically complete. This paper investigates whether the analogous statement holds in higher dimensions. A positive answer to this question is obtained for a large class of models which can be studied with the help of Kaluza-Klein reduction to solutions of the Einstein-scalar field equations in four dimensions. The proof of this result makes use of a criterion for geodesic completeness which is applicable to more general spatially homogeneous models.Comment: 18 page

    Parking functions, labeled trees and DCJ sorting scenarios

    Get PDF
    In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios, and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) rearrangement scenarios of co-tailed genomes. We also construct effective bijections between the set of scenarios that sort a cycle and well studied combinatorial objects such as parking functions and labeled trees.Comment: 12 pages, 3 figure

    Duality properties of Gorringe-Leach equations

    Full text link
    In the category of motions preserving the angular momentum's direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold-Vassiliev type. The specific associated conserved quantities (Laplace-Runge-Lenz vector and Fradkin-Jauch-Hill tensor) are then dual reflections one of the othe
    corecore