17 research outputs found

    The Front End in Anti-Electrostatic Discharge for Product Innovation Development:Polycarbonate/graphene Composite

    Get PDF
    Abstract:The conceptualization of new polymer compounding, for use in anti-electrostatic product innovation development, consists of five sub-phases which include; finding market demands and potential users, conducting preliminary scientific experiment so as to achieve the best possible compound recipes, conducting an upscale of the compound recipes for industrial prospect, assessing technology acceptance using technology acceptance methods (TAM) and, finally assessing a potential for business commercialization. Some key activities were studied in the front end research, for example, literature reviews, the methodologies of quantitative performed in front end research findings about market demands and capabilities, polymeric composites laboratory testing for finding the types and dosage amounts of graphene to be administered. In addition, the product concepts were frequently developed in parallel that require specifications of the physical, conductive and structural properties. These findings have implications for increasing the success and the qualities of front end efforts for composites of excellence

    Electrical Conductivity of Electrospun Polyaniline and Polyaniline-Blend Fibers and Mats

    Get PDF
    Submicrometer fibers of polyaniline (PAni) doped with (+)-camphor-10-sulfonic acid (HCSA) and blended with poly(methyl methacrylate) (PMMA) or poly(ethylene oxide) were electrospun over a range of compositions. Continuous, pure PAni fibers doped with HCSA were also produced by coaxial electrospinning and subsequent removal of the PMMA shell polymer. The electrical conductivities of both the fibers and the mats were characterized. The electrical conductivities of the fibers were found to increase exponentially with the weight percent of doped PAni in the fibers, with values as high as 50 ± 30 S/cm for as-electrospun fibers of 100% doped PAni and as high as 130 ± 40 S/cm upon further solid state drawing. These high electrical conductivities are attributed to the enhanced molecular orientation arising from extensional deformation in the electrospinning process and afterward during solid state drawing. A model is proposed that permits the calculation of mat conductivity as a function of fiber conductivity, mat porosity, and fiber orientation distribution; the results agree quantitatively with the independently measured mat conductivities.United States. Army Research Office (Institute for Soldier Nanotechnologies, Contract ARO W911NF-07-D- 0004

    Application of direct tracking method for measuring electrospun nanofiber diameter

    No full text
    In this paper, direct tracking method as an image analysis based technique for measuring electrospun nanofiber diameter has been presented and compared with distance transform method. Samples with known characteristics generated using a simulation scheme known as µ-randomness were employed to evaluate the accuracy of the method. Electrospun webs of polyvinyl alcohol (PVA) were also used to verify the applicability of the method on real samples. Since direct tracking as well as distance transform require binary input images, micrographs of the electrospun webs obtained from Scanning Electron Microscopy (SEM) were first converted to black and white using local thresholding. Direct tracking resulted in more accurate estimations of fiber diameter for simulated images as well as electrospun webs suggesting the usefulness of the method for electrospun nanofiber diameter measurement
    corecore