520 research outputs found

    Nonmetricity and torsion induced by dilaton gravity in two dimension

    Full text link
    We develop a theory in which there are couplings amongst Dirac spinor, dilaton and non-Riemannian gravity and explore the nature of connection-induced dilaton couplings to gravity and Dirac spinor when the theory is reformulated in terms of the Levi-Civita connection. After presenting some exact solutions without spinors, we investigate the minimal spinor couplings to the model and in conclusion we can not find any nontrivial dilaton couplings to spinor.Comment: Added references, Accepted for publication in GR

    Symmetric Teleparallel Gravity: Some exact solutions and spinor couplings

    Full text link
    In this paper we elaborate on the symmetric teleparallel gravity (STPG) written in a non-Riemannian spacetime with nonzero nonmetricity, but zero torsion and zero curvature. Firstly we give a prescription for obtaining the nonmetricity from the metric in a peculiar gauge. Then we state that under a novel prescription of parallel transportation of a tangent vector in this non-Riemannian geometry the autoparallel curves coincides with those of the Riemannian spacetimes. Subsequently we represent the symmetric teleparallel theory of gravity by the most general quadratic and parity conserving lagrangian with lagrange multipliers for vanishing torsion and curvature. We show that our lagrangian is equivalent to the Einstein-Hilbert lagrangian for certain values of coupling coefficients. Thus we arrive at calculating the field equations via independent variations. Then we obtain in turn conformal, spherically symmetric static, cosmological and pp-wave solutions exactly. Finally we discuss a minimal coupling of a spin-1/2 field to STPG.Comment: Accepted for publication in the International Journal of Modern Physics

    Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives

    Get PDF
    The cement industry plays a significant role in global carbon emissions, underscoring the urgent need for measures to transition it toward a net-zero carbon footprint. This paper presents a detailed plan to this end, examining the current state of the cement sector, its carbon output, and the imperative for emission reduction. It delves into various low-CO2 technologies and emerging innovations such as alkali-activated cements, calcium looping, electrification, and bio-inspired materials. Economic and policy factors, including cost assessments and governmental regulations, are considered alongside challenges and potential solutions. Concluding with future prospects, the paper offers recommendations for policymakers, industry players, and researchers, highlighting the roadmap's critical role in achieving a carbon-neutral cement sector

    Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations

    Get PDF
    This review paper provides a comprehensive analysis of cement-based solidification and immobilisation of nuclear waste. It covers various aspects including mechanisms, formulations, testing and regulatory considerations. The paper begins by emphasizing the importance of nuclear waste management and the associated challenges. It explores the mechanisms and principles in cement-based solidification, with a particular focus on the interaction between cement and nuclear waste components. Different formulation considerations are discussed, encompassing factors such as cement types, the role of additives and modifiers. The review paper also examines testing and characterisation methods used to assess the physical, chemical and mechanical properties of solidified waste forms. Then the paper addresses the regulatory considerations and compliance requirements for cement-based solidification. The paper concludes by critically elaborating on the current challenges, emerging trends and future research needs in the field. Overall, this review paper offers a comprehensive overview of cement-based solidification, providing valuable insights for researchers, practitioners and regulatory bodies involved in nuclear waste management

    Poisson-sigma model for 2D gravity with non-metricity

    Full text link
    We present a Poisson-sigma model describing general 2D dilaton gravity with non-metricity, torsion and curvature. It involves three arbitrary functions of the dilaton field, two of which are well-known from metric compatible theories, while the third one characterizes the local strength of non-metricity. As an example we show that alpha' corrections in 2D string theory can generate (target space) non-metricity.Comment: 9 page

    Long-term stability test of a triple GEM detector

    Full text link
    The main aim of the study is to perform the long-term stability test of gain of the single mask triple GEM detector. A simple method is used for this long- term stability test using a radioactive X-ray source with high activity. The test is continued till accumulation of charge per unit area > 12.0 mC/mm2. The details of the chamber fabrication, the test set-up, the method of measurement and the test results are presented in this paper.Comment: 8 pages, 5 figure

    Neutrino oscillations with disentanglement of a neutrino from its partners

    Full text link
    We bring attention to the fact that in order to understand existing data on neutrino oscillations, and to design future experiments, it is imperative to appreciate the role of quantum entanglement. Once this is accounted for, the resulting energy-momentum conserving phenomenology requires a single new parameter related to disentanglement of a neutrino from its partners. This parameter may not be CP symmetric. We illustrate the new ideas, with potentially measurable effects, in the context of a novel experiment recently proposed by Gavrin, Gorbachev, Veretenkin, and Cleveland. The strongest impact of our ideas is on the resolution of various anomalies in neutrino oscillations and on neutrino propagation in astrophysical environments.Comment: 6 page
    corecore