2,800 research outputs found

    Phase behavior of polydisperse sticky hard spheres: analytical solutions and perturbation theory

    Full text link
    We discuss phase coexistence of polydisperse colloidal suspensions in the presence of adhesion forces. The combined effect of polydispersity and Baxter's sticky-hard-sphere (SHS) potential, describing hard spheres interacting via strong and very short-ranged attractive forces, give rise, within the Percus-Yevick (PY) approximation, to a system of coupled quadratic equations which, in general, cannot be solved either analytically or numerically. We review and compare two recent alternative proposals, which we have attempted to by-pass this difficulty. In the first one, truncating the density expansion of the direct correlation functions, we have considered approximations simpler than the PY one. These CnC_{n} approximations can be systematically improved. We have been able to provide a complete analytical description of polydisperse SHS fluids by using the simplest two orders C0C_{0} and C1C_{1}, respectively. Such a simplification comes at the price of a lower accuracy in the phase diagram, but has the advantage of providing an analytical description of various new phenomena associated with the onset of polydispersity in phase equilibria (e.g. fractionation). The second approach is based on a perturbative expansion of the polydisperse PY solution around its monodisperse counterpart. This approach provides a sound approximation to the real phase behavior, at the cost of considering only weak polydispersity. Although a final seattlement on the soundness of the latter method would require numerical simulations for the polydisperse Baxter model, we argue that this approach is expected to keep correctly into account the effects of polydispersity, at least qualitatively.Comment: 12 pages, 4 figures, to appear in Molec. Phys. special issue Liblice 200

    Phase diagram of Janus Particles

    Full text link
    We deeply investigate a simple model representative of the recently synthesized Janus particles, i.e. colloidal spherical particles whose surface is divided into two areas of different chemical composition. When the two surfaces are solvophilic and solvophobic, these particles constitute the simplest example of surfactants. The phase diagram includes a colloidal-poor (gas) colloidal-rich (liquid) de-mixing region, which is progressively suppressed by the insurgence of micelles, providing the first model where micellization and phase-separation are simultaneously observed. The coexistence curve is found to be negatively sloped in the temperature-pressure plane, suggesting that Janus particles can provide a colloidal system with anomalous thermodynamic behavior.Comment: 5 pages, 5 figures, Phys. Rev. Lett. in pres

    On the compressibility equation of state for multicomponent adhesive hard sphere fluids

    Full text link
    The compressibility equation of state for a multicomponent fluid of particles interacting via an infinitely narrow and deep potential, is considered within the mean spherical approximation (MSA). It is shown that for a class of models leading to a particular form of the Baxter functions qij(r)q_{ij}(r) containing density-independent stickiness coefficient, the compressibility EOS does not exist, unlike the one-component case. The reason for this is that a direct integration of the compressibility at fixed composition, cannot be carried out due to the lack of a reciprocity relation on the second order partial derivatives of the pressure with respect to two different densities. This is, in turn, related to the inadequacy of the MSA. A way out to this drawback is presented in a particular example, leading to a consistent compressibility pressure, and a possible generalization of this result is discussed.Comment: 13 pages, no figures, accepted for publication Molec. Physics (2002

    Data Workflow in Large Scale Simulations of Blood Flow in Aneurysms

    Get PDF
    Aneurysms are responsibile for significant morbidity and mortality, and there is a need for an increased understanding of all the aspects of the natural history of these lesions. We are currently working to extend our analyses with the goal of creating models of aneurysmal progression that are able to predict rupture risk through the description of the evolving geometry, structure, properties, and loads. Realization of patient specific models of the blood circulation necessitates a complex computationally and data intensive procedure that starts from the collection of medical images in a clinical setting and encompasses several stages of data processing on (and transfer to and from) specialized hardware, which include high-performance and visualization clusters as well as consumer workstations and local drives for final storage

    Gravitational waves from hyperbolic encounters

    Full text link
    The emission of gravitational waves from a system of massive objects interacting on hyperbolic orbits is studied in the quadrupole approximation. Analytic expressions are derived for the gravitational radiation luminosity, the total energy output and the gravitational radiation amplitude. An estimation of the expected number of events towards different targets (i.e. globular clusters and the center of the Galaxy) is also given. In particular, for a dense stellar cluster at the galactic center, a rate up to one event per year is obtained.Comment: 6 pages, 2 figure

    Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report.

    Get PDF
    Prokineticin 2 (Prok2) or prokineticin-receptor2 (Prok-R2) gene mutations are associated with Kallmann syndrome (KS). We describe a new homozygous mutation of Prok-R2 gene in a man displaying KS with an apparent reversal of hypogonadism. The proband, offspring of consanguineous parents, presented at age 19 years with absent puberty, no sense of smell, low testosterone and gonadotrophin levels. Magnetic resonance imaging showed olfactory bulb absence. The patient achieved virilization and spermatogenesis with gonadotrophin administration. Two years after discontinuing hormonal therapy, he maintained moderate oligozoospermia and normal testosterone levels. Prok2 and Prok- R2 gene sequence analyses were performed. The proband had a homozygous mutation in Prok-R2 exon 2 that harbours the c.T820>A base substitution, causing the introduction of an aspartic acid in place of valine at position 274 (Val274Asp). His mother had the same mutation in heterozygous state. This report describes a novel homozygous mutation of Prok-R2 gene in a man with variant KS, underlying the role of Prok-R2 gene in the olfactory and reproductive system development in humans. Present findings indicate that markedly delayed activation of gonadotrophin secretion may occur in some KS cases with definite gene defects, and that oligozoospermia might result from a variant form of reversible hypogonadotrophic hypogonadism

    From rods to helices: evidence of a screw-like nematic phase

    Full text link
    Evidence of a special chiral nematic phase is provided using numerical simulation and Onsager theory for systems of hard helical particles. This phase appears at the high density end of the nematic phase, when helices are well aligned, and is characterized by the C2_2 symmetry axes of the helices spiraling around the nematic director with periodicity equal to the particle pitch. This coupling between translational and rotational degrees of freedom allows a more efficient packing and hence an increase of translational entropy. Suitable order parameters and correlation functions are introduced to identify this screw-like phase, whose main features are then studied as a function of radius and pitch of the helical particles. Our study highlights the physical mechanism underlying a similar ordering observed in colloidal helical flagella [E. Barry et al. \textit{Phys. Rev. Lett.} \textbf{96}, 018305 (2006)] and raises the question of whether it could be observed in other helical particle systems, such as DNA, at sufficiently high densities.Comment: List of authors correcte

    The penetrable square-well model: extensive versus non-extensive phase

    Full text link
    The phase diagram of the penetrable square-well fluid is investigated through Monte Carlo simulations of various nature. This model was proposed as the simplest possibility of combining bounded repulsions at short scale and short-range attractions. We prove that the model is thermodynamically stable for sufficiently low values of the penetrability parameter, and in this case the system behaves similarly to the square-well model. For larger penetration, there exists an intermediate region where the system is metastable, with well defined fluid-fluid and fluid-solid transitions, at finite size, but eventually becomes unstable in the thermodynamic limit. We characterize the unstable non-extensive phase appearing at high penetrability, where the system collapses into an isolated blob of a few clusters of many ovelapping particles each.Comment: 18 pages, to appear in Molecular Physics, special issue dedicated to Prof. Luciano Reatt

    Osmotic pressure induced coupling between cooperativity and stability of a helix-coil transition

    Full text link
    Most helix-coil transition theories can be characterized by a set of three parameters: energetic, describing the (free) energy cost of forming a helical state in one repeating unit; entropic, accounting for the decrease of entropy due to the helical state formation; and geometric, indicating how many repeating units are affected by the formation of one helical state. Depending on their effect on the helix-coil transition, solvents or co-solutes can be classified with respect to their action on these parameters. Solvent interactions that alter the entropic cost of helix formation by their osmotic action can affect both the stability (transition temperature) and the cooperativity (transition interval) of the helix-coil transition. A consistent inclusion of osmotic pressure effects in a description of helix-coil transition for poly(L-glutamic acid) in solution with polyethylene glycol can offer an explanation of the experimentally observed linear dependence of transition temperature on osmotic pressure as well as the concurrent changes in the cooperativity of the transition.Comment: 5 pages, 3 figures. To be submitted to Phys.Rev.Let
    corecore