5,457 research outputs found

    Pair creation in boost-invariantly expanding electric fields and two-particle correlations

    Full text link
    Pair creation of scalar particles in a boost-invariant electric field which is confined in the forward light cone is studied. We present the proper-time evolution of momentum distributions of created particles, which preserve the boost invariance of the background field. The two-particle correlation of the created particles is also calculated. We find that long-range rapidity correlations may arise from the Schwinger mechanism in the boost-invariant electric field.Comment: 21 pages, 10 figures; v2: minor changes, to appear in Phys. Rev.

    Tasting edge effects

    Get PDF
    We show that the baking of potato wedges constitutes a crunchy example of edge effects, which are usually demonstrated in electrostatics. A simple model of the diffusive transport of water vapor around the potato wedges shows that the water vapor flux diverges at the sharp edges in analogy with its electrostatic counterpart. This increased evaporation at the edges leads to the crispy taste of these parts of the potatoes.Comment: to appear in American Journal of Physic

    Maximal extension of the Schwarzschild spacetime inspired by noncommutative geometry

    Full text link
    We derive a transformation of the noncommutative geometry inspired Schwarzschild solution into new coordinates such that the apparent unphysical singularities of the metric are removed. Moreover, we give the maximal singularity-free atlas for the manifold with the metric under consideration. This atlas reveals many new features e.g. it turns out to describe an infinite lattice of asymptotically flat universes connected by black hole tunnels.Comment: 17 pages LaTex, 2 figure

    On the origin of the unusual behavior in the stretching of single-stranded DNA

    Full text link
    Force extension curves (FECs), which quantify the response of a variety of biomolecules subject to mechanical force (ff), are often quantitatively fit using worm-like chain (WLC) or freely-jointed chain (FJC) models. These models predict that the chain extension, xx, normalized by the contour length increases linearly at small ff and at high forces scale as x∌(1−f−α)x \sim (1 - f^{-\alpha}) where α\alpha= 0.5 for WLC and unity for FJC. In contrast, experiments on ssDNA show that over a range of ff and ionic concentration, xx scales as x∌ln⁥fx\sim\ln f, which cannot be explained using WLC or FJC models. Using theory and simulations we show that this unusual behavior in FEC in ssDNA is due to sequence-independent polyelectrolyte effects. We show that the x∌ln⁥fx\sim \ln f arises because in the absence of force the tangent correlation function, quantifying chain persistence, decays algebraically on length scales on the order of the Debye length. Our theory, which is most appropriate for monovalent salts, quantitatively fits the experimental data and further predicts that such a regime is not discernible in double stranded DNA.Comment: Accepted for publication in JC

    Contact resistance and shot noise in graphene transistors

    Full text link
    Potential steps naturally develop in graphene near metallic contacts. We investigate the influence of these steps on the transport in graphene Field Effect Transistors. We give simple expressions to estimate the voltage-dependent contribution of the contacts to the total resistance and noise in the diffusive and ballistic regimes.Comment: 6 pages, 4 figures; Figs 3 and 4 completed and appendix adde

    Approximative analytical solutions of the Dirac equation in Schwarzschild spacetime

    Full text link
    Approximative analytic solutions of the Dirac equation in the geometry of Schwarzschild black holes are derived obtaining information about the discrete energy levels and the asymptotic behavior of the energy eigenspinors.Comment: 8 page

    Stability analysis of the Witten black hole (cigar soliton) under world-sheet RG flow

    Full text link
    We analyze the stability of the Euclidean Witten black hole (the cigar soliton in mathematics literature) under first-order RG (Ricci) flow of the world-sheet sigma model. This analysis is from the target space point of view. We find that the Witten black hole has no unstable normalizable perturbative modes in a linearized mode analysis in which we consider circularly symmetric perturbations. Finally, we discuss a result from mathematics that implies the existence of a non-normalizable mode of the Witten black hole under which the geometry flows to the sausage solution studied by Fateev, Onofri and Zamolodchikov.Comment: 17 pages, version to appear in Physical Review D, and now has complete proof of stability for circularly symmetric perturbations, in response to referee comment

    Controlled collisions of a single atom and ion guided by movable trapping potentials

    Full text link
    We consider a system composed of a trapped atom and a trapped ion. The ion charge induces in the atom an electric dipole moment, which attracts it with an r^{-4} dependence at large distances. In the regime considered here, the characteristic range of the atom-ion interaction is comparable or larger than the characteristic size of the trapping potential, which excludes the application of the contact pseudopotential. The short-range part of the interaction is described in the framework of quantum-defect theory, by introducing some short-range parameters, which can be related to the s-wave scattering length. When the separation between traps is changed we observe trap-induced shape resonances between molecular bound states and vibrational states of the external trapping potential. Our analysis is extended to quasi-one-dimensional geometries, when the scattering exhibit confinement-induced resonances, similar to the ones studied before for short-range interactions. For quasi-one-dimensional systems we investigate the effects of coupling between the center of mass and relative motion, which occurs for different trapping frequencies of atom and ion traps. Finally, we show how the two types of resonances can be employed for quantum state control and spectroscopy of atom-ion molecules.Comment: 17 pages, 16 figure

    Reflection above the barrier as tunneling in momentum space

    Get PDF
    Quantum mechanics predicts an exponentially small probability that a particle with energy greater than the height of a potential barrier will nevertheless reflect from the barrier in violation of classical expectations. This process can be regarded as tunneling in momentum space, leading to a simple derivation of the reflection probability.Comment: 7 pages, 3 figures, submitted to American Journal of Physics. Version 2: MIT preprint number added, typographical error in caption to Figure 2 correcte

    Critical role of canonical transient receptor potential channel 7 in initiation of seizures

    Get PDF
    Status epilepticus (SE) is a life-threatening disease that has been recognized since antiquity but still causes over 50,000 deaths annually in the United States. The prevailing view on the pathophysiology of SE is that it is sustained by a loss of normal inhibitory mechanisms of neuronal activity. However, the early process leading to the initiation of SE is not well understood. Here, we show that, as seen in electroencephalograms, SE induced by the muscarinic agonist pilocarpine in mice is preceded by a specific increase in the gamma wave, and genetic ablation of canonical transient receptor potential channel (TRPC) 7 significantly reduces this pilocarpine-induced increase of gamma wave activity, preventing the occurrence of SE. At the cellular level, TRPC7 plays a critical role in the generation of spontaneous epileptiform burst firing in cornu ammonis (CA) 3 pyramidal neurons in brain slices. At the synaptic level, TRPC7 plays a significant role in the long-term potentiation at the CA3 recurrent collateral synapses and Schaffer collateral-CA1 synapses, but not at the mossy fiber-CA3 synapses. Taken together, our data suggest that epileptiform burst firing generated in the CA3 region by activity-dependent enhancement of recurrent collateral synapses may be an early event in the initiation process of SE and that TRPC7 plays a critical role in this cellular event. Our findings reveal that TRPC7 is intimately involved in the initiation of seizures both in vitro and in vivo. To our knowledge, this contribution to initiation of seizures is the first identified functional role for the TRPC7 ion channel.Fil: Phelan, K. D.. University of Arkansas for Medical Sciences; Estados UnidosFil: Shwe, U. T.. University of Arkansas for Medical Sciences; Estados UnidosFil: Abramowitz, J.. National Institute of Environmental Health Sciences; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Birnbaumer, Lutz. National Institute of Environmental Health Sciences; Estados UnidosFil: Zheng, F.. University of Arkansas for Medical Sciences; Estados Unido
    • 

    corecore