5,821 research outputs found

    Quantitative Simulation of the Superconducting Proximity Effect

    Full text link
    A numerical method is developed to calculate the transition temperature of double or multi-layers consisting of films of super- and normal conductors. The approach is based on a dynamic interpretation of Gorkov's linear gap equation and is very flexible. The mean free path of the different metals, transmission through the interface, ratio of specular reflection to diffusive scattering at the surfaces, and fraction of diffusive scattering at the interface can be included. Furthermore it is possible to vary the mean free path and the BCS interaction NV in the vicinity of the interface. The numerical results show that the normalized initial slope of an SN double layer is independent of almost all film parameters except the ratio of the density of states. There are only very few experimental investigations of this initial slope and they consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the coefficient of the initial slope in these experiments is of the order or less than 2 while the (weak coupling) theory predicts a value of about 4.5. This discrepancy has not been recognized in the past. The autor suggests that it is due to strong coupling behavior of Pb in the double layers. The strong coupling gap equation is evaluated in the thin film limit and yields the value of 1.6 for the coefficient. This agrees much better with the few experimental results that are available. PACS: 74.45.+r, 74.62.-c, 74.20.F

    Thermocapillary rupture in falling liquid films at moderate Reynolds numbers

    Full text link
    An experimental study of the flow of a water film over a heated surface for Re = 15-50 was performed. The influence of the development of thermocapillary instability on the wave amplitudes, the deformation of the surface of the liquid film, and the formation of the first stable dry spot on the heater are investigated. It is shown that the interaction of waves with thermocapillary structures can lead to an increase in the critical heat flux corresponding to the rupture of the liquid film, as compared with the data known in the literature

    Multiple Andreev Reflections in Weak Links of Superfluid 3He-B

    Get PDF
    We calculate the current-pressure characteristics of a ballistic pinhole aperture between two volumes of B-phase superfluid 3He. The most important mechanism contributing to dissipative currents in weak links of this type is the process of multiple Andreev reflections. At low biases this process is significantly affected by relaxation due to inelastic quasiparticle-quasiparticle collisions. In the numerical calculations, suppression of the superfluid order parameter at surfaces is taken into account self-consistently. When this effect is neglected, the theory may be developed analytically like in the case of s-wave superconductors. A comparison with experimental results is presented.Comment: 12 pages, 9 figures, RevTeX

    Proximity Effect in Normal Metal - High Tc Superconductor Contacts

    Full text link
    We study the proximity effect in good contacts between normal metals and high Tc (d-wave) superconductors. We present theoretical results for the spatially dependent order parameter and local density of states, including effects of impurity scattering in the two sides, s-wave pairing interaction in the normal metal side (attractive or repulsive), as well as subdominant s-wave paring in the superconductor side. For the [100] orientation, a real combination d+s of the order parameters is always found. The spectral signatures of the proximity effect in the normal metal includes a suppression of the low-energy density of states and a finite energy peak structure. These features are mainly due to the impurity self-energies, which dominate over the effects of induced pair potentials. For the [110] orientation, for moderate transparencies, induction of a d+is order parameter on the superconductor side, leads to a proximity induced is order parameter also in the normal metal. The spectral signatures of this type of proximity effect are potentially useful for probing time-reversal symmetry breaking at a [110] interface.Comment: 10 pages, 10 figure

    Point Contact Spectroscopy of Superconducting Gap Anisotropy in Nickel Borocarbide Compound LuNi2B2C

    Get PDF
    Point contacts are used to investigate the anisotropy of the superconducting energy gap in LuNi2B2C in the ab plane and along the c axis. It is shown that the experimental curves should be described assuming that the superconducting gap is non-uniformly distributed over the Fermi surface. The largest and the smallest gaps have been estimated by two-gap fitting models. It is found that the largest contribution to the point-contact conductivity in the c direction is made by a smaller gap and, in the ab plane by a larger gap. The deviation from the one-gap BCS model is pronounced in the temperature dependence of the gap in both directions. The temperature range, where the deviation occurs, is for the c direction approximately 1.5 times more than in the ab plane. The \Gamma parameter, allowing quantitatively estimate the gap anisotropy by one-gap fitting, in c direction is also about 1.5 times greater than in the ab plane. Since it is impossible to describe satisfactorily such gap distribution either by the one- or two-gap models, a continuous, dual-maxima model of gap distribution over the Fermi surface should be used to describe superconductivity in this material.Comment: 10 pages, 14 Figs, accepted in PR

    Theory of AC Josepson Effect in Superconducting Constrictions

    Full text link
    We have developed a microscopic theory of ac Josephson effect in short ballistic superconducting constrictions with arbitrary electron transparency and in constrictions with diffusive electron transport. The theory is valid for arbitrary miscroscopic structure of the superconducting electrodes of the constriction. As applications of the theory we study smearing of the subgap current singularities by pair-breaking effects and also the structure of these singularities in the constrictions between the composite S/N electrodes with the proximity-induced gap in the normal layer.Comment: 11 pages, RevTex, 3 figures available on reques

    Nonlocal Andreev reflection at high transmissions

    Full text link
    We analyze non-local effects in electron transport across three-terminal normal-superconducting-normal (NSN) structures. Subgap electrons entering S-electrode from one N-metal may form Cooper pairs with their counterparts penetrating from another N-metal. This phenomenon of crossed Andreev reflection -- combined with normal scattering at SN interfaces -- yields two different contributions to non-local conductance which we evaluate non-perturbatively at arbitrary interface transmissions. Both these contributions reach their maximum values at fully transmitting interfaces and demonstrate interesting features which can be tested in future experiments.Comment: 4 pages, 4 figure
    • …
    corecore