47,523 research outputs found
SCUBA observations of the Horsehead Nebula - what did the horse swallow?
We present observations taken with SCUBA on the JCMT of the Horsehead Nebula
in Orion (B33), at wavelengths of 450 and 850 \mum. We see bright emission from
that part of the cloud associated with the photon-dominated region (PDR) at the
`top' of the horse's head, which we label B33-SMM1. We characterise the
physical parameters of the extended dust responsible for this emission, and
find that B33-SMM1 contains a more dense core than was previously suspected. We
compare the SCUBA data with data from the Infrared Space Observatory (ISO) and
find that the emission at 6.75-\mum is offset towards the west, indicating that
the mid-infrared emission is tracing the PDR while the submillimetre emission
comes from the molecular cloud core behind the PDR. We calculate the virial
balance of this core and find that it is not gravitationally bound but is being
confined by the external pressure from the HII region IC434, and that it will
either be destroyed by the ionising radiation, or else may undergo triggered
star formation. Furthermore we find evidence for a lozenge-shaped clump in the
`throat' of the horse, which is not seen in emission at shorter wavelengths. We
label this source B33-SMM2 and find that it is brighter at submillimetre
wavelengths than B33-SMM1. SMM2 is seen in absorption in the 6.75-\mum ISO
data, from which we obtain an independent estimate of the column density in
excellent agreement with that calculated from the submillimetre emission. We
calculate the stability of this core against collapse and find that it is in
approximate gravitational virial equilibrium. This is consistent with it being
a pre-existing core in B33, possibly pre-stellar in nature, but that it may
also eventually undergo collapse under the effects of the HII region.Comment: 11 pages, 6 figures, accepted by MNRA
An empirical model for protostellar collapse
We propose a new analytic model for the initial conditions of protostellar
collapse in relatively isolated regions of star formation. The model is
non-magnetic, and is based on a Plummer-like radial density profile as its
initial condition. It fits: the observed density profiles of pre-stellar cores
and Class 0 protostars; recent observations in pre-stellar cores of roughly
constant contraction velocities over a wide range of radii; and the lifetimes
and accretion rates derived for Class 0 and Class I protostars. However, the
model is very simple, having in effect only 2 free parameters, and so should
provide a useful framework for interpreting observations of pre-stellar cores
and protostars, and for calculations of radiation transport and time-dependent
chemistry. As an example, we model the pre-stellar core L1544.Comment: To appear in Astrophysical Journal, Jan 20th, 2001. 18 pages incl. 3
fig
Location, Firm Size and International Trade: Simultaneous Measurement of the Effects of Internal and External Scale Economies on Exporting
International Relations/Trade,
Simulating star formation in molecular cloud cores I. The influence of low levels of turbulence on fragmentation and multiplicity
We present the results of an ensemble of simulations of the collapse and
fragmentation of dense star-forming cores. We show that even with very low
levels of turbulence the outcome is usually a binary, or higher-order multiple,
system. We take as the initial conditions for these simulations a typical
low-mass core, based on the average properties of a large sample of observed
cores. All the simulated cores start with a mass of , a
flattened central density profile, a ratio of thermal to gravitational energy
and a ratio of turbulent to gravitational energy
. Even this low level of turbulence is sufficient to
produce multiple star formation in 80% of the cores; the mean number of stars
and brown dwarfs formed from a single core is 4.55, and the maximum is 10. At
the outset, the cores have no large-scale rotation. The only difference between
each individual simulation is the detailed structure of the turbulent velocity
field. The multiple systems formed in the simulations have properties
consistent with observed multiple systems. Dynamical evolution tends
preferentially to eject lower mass stars and brown dwarves whilst hardening the
remaining binaries so that the median semi-major axis of binaries formed is
au. Ejected objects are usually single low-mass stars and brown
dwarfs, yielding a strong correlation between mass and multiplicity. Our
simulations suggest a natural mechanism for forming binary stars that does not
require large-scale rotation, capture, or large amounts of turbulence.Comment: 20 pages, 12 figures submitted to A&
Estimates of Radiation by Superluminal Neutrinos
We show that the more energetic superluminal neutrinos with quadratically
dispersed superluminalities \delta=\beta^2-1, for \beta=v/c where v is the
neutrino velocity, also lose significant energy to radiation to the \nu+e^-+e^+
final state in travelling from CERN to Gran Sasso as has been shown to occur
for those with constant superluminality by Cohen and Glashow if indeed \delta
\simeq 5\times 10^{-5}. In addition, we clarify the dependence of such
radiative processes on the size of the superluminality.Comment: 6 pages, no figures; text re-arranged for journal purposes; improved
references; published version(title changed by Editors
Estimation of linkage disequilibrium in a sample of the United Kingdom dairy cattle population using unphased genotypes
The association between genetic marker alleles was estimated for two regions of the bovine genome from a random sample of 50 young dairy bulls born in the United Kingdom between 1988 and 1995. Microsatellite marker genotypes were obtained for six markers on chromosome 2 and seven markers on chromosome 6, spanning 38 and 20 cM, respectively. Two different methods, which do not require family information, were used to estimate population haplotype frequencies. Haplotype frequencies were estimated for pairs of loci using the expectation-maximization algorithm and for all linked loci using a Bayesian approach via a Markov chain-Monte Carlo algorithm. Significant (P = 0.0007) linkage disequilibrium was detected between pairs of loci in syntenic groups (that is, loci in the same linkage group), extending to about 10 cM. No significant linkage disequilibrium was detected between markers in nonsyntenic regions. Given the observed level of linkage disequilibrium, mapping methods based on population-wide association might provide a better resolution than traditional quantitative trait loci mapping methods in the U.K. dairy cattle population and may reduce the required sample sizes of the experiments
- …