99 research outputs found

    Charge carrier injection into insulating media: single-particle versus mean-field approach

    Full text link
    Self-consistent, mean-field description of charge injection into a dielectric medium is modified to account for discreteness of charge carriers. The improved scheme includes both the Schottky barrier lowering due to the individual image charge and the barrier change due to the field penetration into the injecting electrode that ensures validity of the model at both high and low injection rates including the barrier dominated and the space-charge dominated regimes. Comparison of the theory with experiment on an unipolar ITO/PPV/Au-device is presented.Comment: 32 pages, 9 figures; revised version accepted to PR

    An evaluation of possible mechanisms for anomalous resistivity in the solar corona

    Full text link
    A wide variety of transient events in the solar corona seem to require explanations that invoke fast reconnection. Theoretical models explaining fast reconnection often rely on enhanced resistivity. We start with data derived from observed reconnection rates in solar flares and seek to reconcile them with the chaos-induced resistivity model of Numata & Yoshida (2002) and with resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find that the resistivities arising from either of these mechanisms, when localized over lengthscales of the order of an ion skin depth, are capable of explaining the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic

    НОВА СИМЕТРІЯ ЕЛЕКТРОСЛАБКОГО ЛАГРАНЖІАНУ

    Get PDF
    Аналізуються проблеми стандартної моделі, пов'язані з введенням електромагнітного поля як лінійної комбінації полів, на яких реалізуються представлення різних калібрувальних груп. В роботі звертається увага на те що в будь-якій моделі із калібрувальними полями, генератори, які входять до коваріантних похідних, можуть бути задані лише з точністю до переходу до еквівалентного представлення. Пропонується вважати що динамічні моделі з еквівалентними представленнями генераторів повинні бути фізично еквівалентними. Це означає вимогу симетрії лагранжіану відносно переходу від одного з еквівалентних представлень генераторів до іншого. Зокрема в лагранжіані стандартної моделі маємо підвищуючий і понижуючий генератори групи SU(2). Закон групового множення визначає лише модулі  матричних елементів цих генераторів, в той час як аргументи залишаються невизначеними. В роботі така невизначеність розглядається як локальна. В різних точках простору-часу генератори можуть задаватися в різних еквівалентних представленнях. Компенсація невизначених аргументів матричних елементів генераторів групи SU(2) може бути проведена за допомогою локального U(1) - перетворення з введенням відповідного калібрувального поля, яке може розглядатися як електромагнітне. Аналізуються переваги такого введення електромагнітного поля у порівнянні з методом, використаним в стандартній моделі

    Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence

    Get PDF
    We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfven waves that have been partially reflected, then damped by anisotropic turbulent cascade, and (3) solar wind acceleration from gradients of gas pressure, acoustic wave pressure, and Alfven wave pressure. The only input parameters are the photospheric lower boundary conditions for the waves and the radial dependence of the background magnetic field along the flux tube. For a single choice for the photospheric wave properties, our models produce a realistic range of slow and fast solar wind conditions by varying only the coronal magnetic field. Specifically, a 2D model of coronal holes and streamers at solar minimum reproduces the latitudinal bifurcation of slow and fast streams seen by Ulysses. The radial gradient of the Alfven speed affects where the waves are reflected and damped, and thus whether energy is deposited below or above the Parker critical point. As predicted by earlier studies, a larger coronal ``expansion factor'' gives rise to a slower and denser wind, higher temperature at the coronal base, less intense Alfven waves at 1 AU, and correlative trends for commonly measured ratios of ion charge states and FIP-sensitive abundances that are in general agreement with observations. These models offer supporting evidence for the idea that coronal heating and solar wind acceleration (in open magnetic flux tubes) can occur as a result of wave dissipation and turbulent cascade. (abridged abstract)Comment: 32 pages (emulateapj style), 18 figures, ApJ Supplement, in press (v. 171, August 2007

    Evidence for electron Landau damping in space plasma turbulence

    Get PDF
    How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earth's magnetosheath, the region of solar wind downstream of the Earth's bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.STFC Ernest Rutherford Fellowship [ST/N003748/2]; NASA HSR grant [NNX16AM23G]; NSF CAREER Award [AGS-1054061]; NASA HGI grant [80NSSC18K0643]; NASA MMS GI grant [80NSSC18K1371]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Magnetohydrodynamic Oscillations in the Solar Corona and Earth’s Magnetosphere: Towards Consolidated Understanding

    Full text link
    corecore