18,408 research outputs found

    Hugh Miller on fisherfolk

    Get PDF

    Mass distributions in a variational model

    Full text link
    The time-dependent Hartree-Fock approach may be derived from a variational principle and a Slater Determinant wavefunction Ansatz. It gives a good description of nuclear processes in which one-body collisions dominate and has been applied with success to giant resonances and collisions around the barrier. It is inherently unable to give a good description of two-body observables. A variational principle, due to Balian and Veneroni has been proposed which can be geared to good reproduction of two-body observables. Keeping the Slater Determinant Ansatz, and restricting the two-body observables to be the squares of one-body observables, the procedure can be implemented as a modification of the time-dependent Hartree-Fock procedure. Applications, using the Skyrme effective interaction, are presented for the mass distributions of fragments following de-excitation of the giant dipole resonance in S-32. An illustration of the method's use in collisions is given.Comment: 5 pages, proceedings of XXXII Symposium on Nuclear Physics, Cocoyoc, Mexic

    Cause of the charge radius isotope shift at the \emph{N}=126 shell gap

    Full text link
    We discuss the mechanism causing the `kink' in the charge radius isotope shift at the N=126 shell closure. The occupation of the 1i11/2i_{11/2} neutron orbital is the decisive factor for reproducing the experimentally observed kink. We investigate whether this orbital is occupied or not by different Skyrme effective interactions as neutrons are added above the shell closure. Our results demonstrate that several factors can cause an appreciable occupation of the 1i11/2i_{11/2} neutron orbital, including the magnitude of the spin-orbit field, and the isoscalar effective mass of the Skyrme interaction. The symmetry energy of the effective interaction has little influence upon its ability to reproduce the kink.Comment: 4 pages, 4 figures, to be submitted to proceedings of INPC 201

    Shapes and Dynamics from the Time-Dependent Mean Field

    Full text link
    Explaining observed properties in terms of underlying shape degrees of freedom is a well--established prism with which to understand atomic nuclei. Self--consistent mean--field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time--dependent extension of the mean--field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28^{28}Si in the first case, and 240^{240}Pu in the latter case.Comment: 9 pages, 5 figures, to appear in proceedings of International Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects" (SDANCA-15), 8-10 October 2015, Sofia, Bulgari
    • …
    corecore