348 research outputs found
Mutations of ras genes in human tumours (Review)
Journal URL: http://www.spandidos-publications.com/ijo/Ras family genes (H-, K- and N-ras) are implicated in a wide range of human tumours. Mutations are a major activating mechanism for the ras family genes, mainly in codons 12, 13 and 61, resulting in their conversion from proto-oncogenes to activated oncogenes. The detection of mutant ras alleles in human tumours has been performed by several investigators in a wide range of tissues. The aim of our review was to summarize the data obtained from these studies and to investigate whether the presence of mutant ras alleles was associated with particular clinical parameters
Detection of hepatitis Î’ virus DNA and mutations in K-ras and p53 genes in human hepatocellular carcinomas
Journal URL: http://www.spandidos-publications.com/ijo/Hepatitis Î’ virus (HBV) infection is considered as one of the major risk factors in the development of human hepatocellular carcinoma (HCC). Recent studies have also suggested the implication of oncogene and onco-suppressor genes in liver carcinogenesis. We studied 41 cases of HCC for the presence of HBV DNA and point mutations in codon 12 of K-ras and codon 249 of p53. We used 'nested' PCR for the amplification of HBV because of the expected low incidence of the virus DNA in the samples. PCR was also used for the amplification of K-ras and p53 regions that contain the codons of interest, followed by RFLP analysis for the detection of point mutations. HBV DNA was amplified in 22 cases (53.7%), while 5 cases (12.2%) appeared to carry mutations in codon 12 of K-ras and 7 cases (17.1%) had mutations in codon 249 of the p53 gene. These results further support the correlation between HBV infection and HCC and also indicate an implication of K-ras and p53 genes in hepatocarcinogenesis
Classification of cancer cell lines using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and statistical analysis
Over the past decade, matrix-assisted laser desorption/ionization time‑of‑flight mass spectrometry (MALDI‑TOF MS) has been established as a valuable platform for microbial identification, and it is also frequently applied in biology and clinical studies to identify new markers expressed in pathological conditions. The aim of the present study was to assess the potential of using this approach for the classification of cancer cell lines as a quantifiable method for the proteomic profiling of cellular organelles. Intact protein extracts isolated from different tumor cell lines (human and murine) were analyzed using MALDI‑TOF MS and the obtained mass lists were processed using principle component analysis (PCA) within Bruker Biotyper® software. Furthermore, reference spectra were created for each cell line and were used for classification. Based on the intact protein profiles, we were able to differentiate and classify six cancer cell lines: two murine melanoma (B16‑F0 and B164A5), one human melanoma (A375), two human breast carcinoma (MCF7 and MDA‑MB‑231) and one human liver carcinoma (HepG2). The cell lines were classified according to cancer type and the species they originated from, as well as by their metastatic potential, offering the possibility to differentiate non‑invasive from invasive cells. The obtained results pave the way for developing a broad‑based strategy for the identification and classification of cancer cell
Elevated P53 expression correlates with a history of heavy smoking in squamous cell carcinoma of the head and neck.
Expression of the tumour suppressor gene p53 was examined in squamous cell carcinoma of the head and neck using two p53 antibodies, PAb 421 and PAb 1801. Elevated p53 expression was found in 67% of the 73 patients investigated. P53 expression was not found to correlate with whether the patient had been previously treated or not, nor any of the clinico-pathological parameters. However a correlation was found between the patients smoking history and positive p53 staining. Six out of seven non-smokers did not express p53 whereas 29 of 37 heavy smokers were found to have elevated p53 expression (P less than 0.005). Also, of a group of ten patients who had given up smoking more than 5 years ago, nine had elevated expression. Epidemiological studies have shown a correlation between heavy smoking and head and neck cancer. The present study indicate a genetic link for this correlation
- …