23,960 research outputs found
Adsorption preference reversal phenomenon from multisite-occupancy theory fortwo-dimensional lattices
The statistical thermodynamics of polyatomic species mixtures adsorbed on
two-dimensional substrates was developed on a generalization in the spirit of
the lattice-gas model and the classical Guggenheim-DiMarzio approximation. In
this scheme, the coverage and temperature dependence of the Helmholtz free
energy and chemical potential are given. The formalism leads to the exact
statistical thermodynamics of binary mixtures adsorbed in one dimension,
provides a close approximation for two-dimensional systems accounting multisite
occupancy and allows to discuss the dimensionality and lattice structure
effects on the known phenomenon of adsorption preference reversal.Comment: 13 pages, 4 figure
The effect of the lateral interactions on the critical behavior of long straight rigid rods on two-dimensional lattices
Using Monte Carlo simulations and finite-size scaling analysis, the critical
behavior of attractive rigid rods of length k (k-mers) on square lattices at
intermediate density has been studied. A nematic phase, characterized by a big
domain of parallel k-mers, was found. This ordered phase is separated from the
isotropic state by a continuous transition occurring at a intermediate density
\theta_c, which increases linearly with the magnitude of the lateral
interactions.Comment: 7 pages, 6 figure
Critical behavior of long straight rigid rods on two-dimensional lattices: Theory and Monte Carlo simulations
The critical behavior of long straight rigid rods of length (-mers) on
square and triangular lattices at intermediate density has been studied. A
nematic phase, characterized by a big domain of parallel -mers, was found.
This ordered phase is separated from the isotropic state by a continuous
transition occurring at a intermediate density . Two analytical
techniques were combined with Monte Carlo simulations to predict the dependence
of on , being . The first involves
simple geometrical arguments, while the second is based on entropy
considerations. Our analysis allowed us also to determine the minimum value of
(), which allows the formation of a nematic phase on a
triangular lattice.Comment: 23 pages, 5 figures, to appear in The Journal of Chemical Physic
- …