11,207 research outputs found

    Electronic structure of periodic curved surfaces -- topological band structure

    Full text link
    Electronic band structure for electrons bound on periodic minimal surfaces is differential-geometrically formulated and numerically calculated. We focus on minimal surfaces because they are not only mathematically elegant (with the surface characterized completely in terms of "navels") but represent the topology of real systems such as zeolites and negative-curvature fullerene. The band structure turns out to be primarily determined by the topology of the surface, i.e., how the wavefunction interferes on a multiply-connected surface, so that the bands are little affected by the way in which we confine the electrons on the surface (thin-slab limit or zero thickness from the outset). Another curiosity is that different minimal surfaces connected by the Bonnet transformation (such as Schwarz's P- and D-surfaces) possess one-to-one correspondence in their band energies at Brillouin zone boundaries.Comment: 6 pages, 8 figures, eps files will be sent on request to [email protected]

    The quantum to classical transition for random walks

    Full text link
    We look at two possible routes to classical behavior for the discrete quantum random walk on the line: decoherence in the quantum ``coin'' which drives the walk, or the use of higher-dimensional coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior, and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the ``quantum'' quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits ``classical'' linear growth of the variance even for weak decoherence.Comment: 4 pages RevTeX 4.0 + 2 figures (encapsulated Postscript). Trimmed for length. Minor corrections + one new referenc

    \u27Texas Maroon’ Bluebonnet

    Get PDF
    The Texas state flower, the bluebonnet, encompasses all six of the Lupinus species native to Texas. The most widespread and popular bluebonnet, Lupinus texensis Hook., is a winter annual that produces violet-blue [violet-blue group 96A, Royal Horticultural Society (RHS), 1982] racemes in early to midspring and is predominately self-pollinating. The Texas Dept. of Transportation uses this species widely for floral displays along roadsides throughout much of the state (Andrews, 1986). Rare white and even rarer pink variants exist in native populations, and a breeding project was initiated in 1985 to develop bluebonnets with novel flower colors for use as bedding plants. ‘Abbott Pink’ was the first seed-propagated cultivar to be developed from this program (Parsons and Davis, 1993). The second cultivar, ‘Barbara Bush’ with novel lavender shade flowers, was developed more recently (Parsons et al., 1994). As with the cultivars previously developed, we used recurrent phenotypic selection to develop ‘Texas Maroon’. This cultivar is intended for use as a bedding plant for maroon flower color

    Prediction of the Atomization Energy of Molecules Using Coulomb Matrix and Atomic Composition in a Bayesian Regularized Neural Networks

    Full text link
    Exact calculation of electronic properties of molecules is a fundamental step for intelligent and rational compounds and materials design. The intrinsically graph-like and non-vectorial nature of molecular data generates a unique and challenging machine learning problem. In this paper we embrace a learning from scratch approach where the quantum mechanical electronic properties of molecules are predicted directly from the raw molecular geometry, similar to some recent works. But, unlike these previous endeavors, our study suggests a benefit from combining molecular geometry embedded in the Coulomb matrix with the atomic composition of molecules. Using the new combined features in a Bayesian regularized neural networks, our results improve well-known results from the literature on the QM7 dataset from a mean absolute error of 3.51 kcal/mol down to 3.0 kcal/mol.Comment: Under review ICANN 201

    Quantum walks in higher dimensions

    Full text link
    We analyze the quantum walk in higher spatial dimensions and compare classical and quantum spreading as a function of time. Tensor products of Hadamard transformations and the discrete Fourier transform arise as natural extensions of the quantum coin toss in the one-dimensional walk simulation, and other illustrative transformations are also investigated. We find that entanglement between the dimensions serves to reduce the rate of spread of the quantum walk. The classical limit is obtained by introducing a random phase variable.Comment: 6 pages, 6 figures, published versio

    Warren McCulloch and the British cyberneticians

    Get PDF
    Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. He interacted regularly with most of the main figures on the British cybernetics scene, forming close friendships and collaborations with several, as well as mentoring others. Many of these interactions stemmed from a 1949 visit to London during which he gave the opening talk at the inaugural meeting of the Ratio Club, a gathering of brilliant, mainly young, British scientists working in areas related to cybernetics. This paper traces some of these relationships and interaction

    Estimating the Expected Value of Partial Perfect Information in Health Economic Evaluations using Integrated Nested Laplace Approximation

    Get PDF
    The Expected Value of Perfect Partial Information (EVPPI) is a decision-theoretic measure of the "cost" of parametric uncertainty in decision making used principally in health economic decision making. Despite this decision-theoretic grounding, the uptake of EVPPI calculations in practice has been slow. This is in part due to the prohibitive computational time required to estimate the EVPPI via Monte Carlo simulations. However, recent developments have demonstrated that the EVPPI can be estimated by non-parametric regression methods, which have significantly decreased the computation time required to approximate the EVPPI. Under certain circumstances, high-dimensional Gaussian Process regression is suggested, but this can still be prohibitively expensive. Applying fast computation methods developed in spatial statistics using Integrated Nested Laplace Approximations (INLA) and projecting from a high-dimensional into a low-dimensional input space allows us to decrease the computation time for fitting these high-dimensional Gaussian Processes, often substantially. We demonstrate that the EVPPI calculated using our method for Gaussian Process regression is in line with the standard Gaussian Process regression method and that despite the apparent methodological complexity of this new method, R functions are available in the package BCEA to implement it simply and efficiently

    Gaussian Approximation Potentials: the accuracy of quantum mechanics, without the electrons

    Get PDF
    We introduce a class of interatomic potential models that can be automatically generated from data consisting of the energies and forces experienced by atoms, derived from quantum mechanical calculations. The resulting model does not have a fixed functional form and hence is capable of modeling complex potential energy landscapes. It is systematically improvable with more data. We apply the method to bulk carbon, silicon and germanium and test it by calculating properties of the crystals at high temperatures. Using the interatomic potential to generate the long molecular dynamics trajectories required for such calculations saves orders of magnitude in computational cost.Comment: v3-4: added new material and reference

    Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps

    Full text link
    We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Melnikov function for a perturbation of a three-dimensional map that has a heteroclinic connection between a pair of invariant circles. The intersection curves of the manifolds are shown to undergo bifurcations in homologyComment: LaTex with 10 eps figure
    • …
    corecore