13,543 research outputs found
Excitation and characterization of long-lived hydrogenic Rydberg states of nitric oxide
High Rydberg states of nitric oxide (NO) with principal quantum numbers
between 40 and 100 and lifetimes in excess of 10 s have been prepared by
resonance enhanced two-color two-photon laser excitation from the X
ground state through the A intermediate state.
Molecules in these long-lived Rydberg states were detected and characterized
126 s after laser photoexcitation by state-selective pulsed electric field
ionization. The laser excitation and electric field ionization data were
combined to construct two-dimensional spectral maps. These maps were used to
identify the rotational states of the NO ion core to which the observed
series of long-lived hydrogenic Rydberg states converge. The results presented
pave the way for Rydberg-Stark deceleration and electrostatic trapping
experiments with NO, which are expected to shed further light on the decay
dynamics of these long-lived excited states, and are of interest for studies of
ion-molecule reactions at low temperatures.Comment: 12 pages, 10 figure
Coupling Rydberg atoms to microwave fields in a superconducting coplanar waveguide resonator
Rydberg helium atoms traveling in pulsed supersonic beams have been coupled
to microwave fields in a superconducting coplanar waveguide (CPW) resonator.
The atoms were initially prepared in the 1s55s S Rydberg level by
two-color two-photon laser excitation from the metastable 1s2s S level.
Two-photon microwave transitions between the 1s55s S and 1s56s
S levels were then driven by the 19.556 GHz third-harmonic microwave
field in a quarter-wave CPW resonator. This superconducting microwave resonator
was fabricated from niobium nitride on a silicon substrate and operated at
temperatures between 3.65 and 4.30 K. The populations of the Rydberg levels in
the experiments were determined by state-selective pulsed electric field
ionization. The coherence of the atom-resonator coupling was studied by
time-domain measurements of Rabi oscillations.Comment: 6 pages, 5 figure
Improved limits on short-wavelength gravitational waves from the cosmic microwave background
The cosmic microwave background (CMB) is affected by the total radiation
density around the time of decoupling. At that epoch, neutrinos comprised a
significant fraction of the radiative energy, but there could also be a
contribution from primordial gravitational waves with frequencies greater than
~ 10^-15 Hz. If this cosmological gravitational wave background (CGWB) were
produced under adiabatic initial conditions, its effects on the CMB and matter
power spectrum would mimic massless non-interacting neutrinos. However, with
homogenous initial conditions, as one might expect from certain models of
inflation, pre big-bang models, phase transitions and other scenarios, the
effect on the CMB would be distinct. We present updated observational bounds
for both initial conditions using the latest CMB data at small scales from the
South Pole Telescope (SPT) in combination with Wilkinson Microwave Anisotropy
Probe (WMAP), current measurements of the baryon acoustic oscillations, and the
Hubble parameter. With the inclusion of the data from SPT the adiabatic bound
on the CGWB density is improved by a factor of 1.7 to 10^6 Omega_gw < 8.7 at
the 95% confidence level (C.L.), with weak evidence in favor of an additional
radiation component consistent with previous analyses. The constraint can be
converted into an upper limit on the tension of horizon-sized cosmic strings
that could generate this gravitational wave component, with Gmu < 2 10^-7 at
95% C.L., for string tension Gmu. The homogeneous bound improves by a factor of
3.5 to 10^6 Omega_gw < 1.0 at 95% C.L., with no evidence for such a component
from current data.Comment: 5 pages, 3 figure
Light-like Signals in General relativity and Cosmology
The modelling of light-like signals in General Relativity taking the form of
impulsive gravitational waves and light-like shells of matter is examined.
Systematic deductions from the Bianchi identities are made. These are based
upon Penrose's hierarchical classification of the geometry induced on the null
hypersurface history of the surface by its imbedding in the space-times to the
future and to the past of it. The signals are not confined to propagate in a
vacuum and thus their interaction with matter (a burst of radiation propagating
through a cosmic fluid, for example) is also studied. Results are accompanied
by illustrative examples using cosmological models, vacuum space-times, the de
sitter univers and Minkowskian space-time.Comment: 21 pages, latex, no figure
Recommended from our members
Estimating drizzle drop size and precipitation rate using two-colour lidar measurements
A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution.
The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions
Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide
The coherent interaction between ensembles of helium Rydberg atoms and
microwave fields in the vicinity of a solid-state co-planar waveguide is
reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38
GHz, have been studied for states with principal quantum numbers in the range
30 - 35 by selective electric-field ionization. An experimental apparatus
cooled to 100 K was used to reduce effects of blackbody radiation.
Inhomogeneous, stray electric fields emanating from the surface of the
waveguide have been characterized in frequency- and time-resolved measurements
and coherence times of the Rydberg atoms on the order of 250 ns have been
determined.Comment: 5 pages, 5 figure
Collision of High Frequency Plane Gravitational and Electromagnetic Waves
We study the head-on collision of linearly polarized, high frequency plane
gravitational waves and their electromagnetic counterparts in the
Einstein-Maxwell theory. The post-collision space-times are obtained by solving
the vacuum Einstein-Maxwell field equations in the geometrical optics
approximation. The head-on collisions of all possible pairs of these systems of
waves is described and the results are then generalised to non-linearly
polarized waves which exhibit the maximum two degrees of freedom of
polarization.Comment: Latex file, 17 pages, accepted for publication in International
Journal of Modern Physics
Interferometers as Probes of Planckian Quantum Geometry
A theory of position of massive bodies is proposed that results in an
observable quantum behavior of geometry at the Planck scale, . Departures
from classical world lines in flat spacetime are described by Planckian
noncommuting operators for position in different directions, as defined by
interactions with null waves. The resulting evolution of position wavefunctions
in two dimensions displays a new kind of directionally-coherent quantum noise
of transverse position. The amplitude of the effect in physical units is
predicted with no parameters, by equating the number of degrees of freedom of
position wavefunctions on a 2D spacelike surface with the entropy density of a
black hole event horizon of the same area. In a region of size , the effect
resembles spatially and directionally coherent random transverse shear
deformations on timescale with typical amplitude . This quantum-geometrical "holographic noise" in position is not
describable as fluctuations of a quantized metric, or as any kind of
fluctuation, dispersion or propagation effect in quantum fields. In a Michelson
interferometer the effect appears as noise that resembles a random Planckian
walk of the beamsplitter for durations up to the light crossing time. Signal
spectra and correlation functions in interferometers are derived, and predicted
to be comparable with the sensitivities of current and planned experiments. It
is proposed that nearly co-located Michelson interferometers of laboratory
scale, cross-correlated at high frequency, can test the Planckian noise
prediction with current technology.Comment: 23 pages, 6 figures, Latex. To appear in Physical Review
- …