19 research outputs found

    Why some stems are red: cauline anthocyanins shield photosystem II against high light stress

    Get PDF
    Red-stemmed plants are extremely common, yet the functions of cauline anthocyanins are largely unknown. The possibility that photoabatement by anthocyanins in the periderm reduces the propensity for photoinhibition in cortical chlorenchyma was tested for Cornus stolonifera. Anthocyanins were induced in green stems exposed to full sunlight. PSII quantum yields (ФPSII) and photochemical quenching coefficients were depressed less in red than in green stems, both under a light ramp and after prolonged exposures to saturating white light. These differences were primarily attributable to the attenuation of PAR, especially green/yellow light, by anthocyanins. However, the red internodes also had less chlorophyll and higher carotenoid:chlorophyll ratios than the green, and when the anthocyanic periderm was removed, small differences in the ФPSII of the underlying chlorenchyma were retained. Thus, light screening by cauline anthocyanins is important, but is only part of a set of protective acclimations to high irradiance. Hourly measurements of ФPSII on established trees under natural daylight indicated a possible advantage of red versus green stems under sub-saturating diffuse, but not direct sunlight. To judge the wider applicability of the hypothesis, responses to high light were compared for red and green stems across five further unrelated species. There was a strong, linear, interspecific correlation between photoprotective advantage and anthocyanin concentration differences among red and green internodes. The photoprotective effect appears to be a widespread phenomenon

    Estimating the burden of disease attributable to four selected environmental risk factors in South Africa

    Get PDF
    The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure.The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty.Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease.This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels

    Sexual Dimorphism of Staminate- and Pistillate-Phase Flowers of Saponaria officinalis (Bouncing Bet) Affects Pollinator Behavior and Seed Set

    Get PDF
    The sequential separation of male and female function in flowers of dichogamous species allows for the evolution of differing morphologies that maximize fitness through seed siring and seed set. We examined staminate- and pistillate-phase flowers of protandrous Saponaria officinalis for dimorphism in floral traits and their effects on pollinator attraction and seed set. Pistillate-phase flowers have larger petals, greater mass, and are pinker in color, but due to a shape change, pistillate-phase flowers have smaller corolla diameters than staminate-phase flowers. There was no difference in nectar volume or sugar content one day after anthesis, and minimal evidence for UV nectar guide patterns in staminate- and pistillate-phase flowers. When presented with choice arrays, pollinators discriminated against pistillate-phase flowers based on their pink color. Finally, in an experimental garden, in 2012 there was a negative correlation between seed set of an open-pollinated, emasculated flower and pinkness (as measured by reflectance spectrometry) of a pistillate-phase flower on the same plant in plots covered with shade cloth. In 2013, clones of genotypes chosen from the 2012 plants that produced pinker flowers had lower seed set than those from genotypes with paler flowers. Lower seed set of pink genotypes was found in open-pollinated and hand-pollinated flowers, indicating the lower seed set might be due to other differences between pink and pale genotypes in addition to pollinator discrimination against pink flowers. In conclusion, staminate- and pistillate-phase flowers of S. officinalis are dimorphic in shape and color. Pollinators discriminate among flowers based on these differences, and individuals whose pistillate-phase flowers are most different in color from their staminate-phase flowers make fewer seeds. We suggest morphological studies of the two sex phases in dichogamous, hermaphroditic species can contribute to understanding the evolution of sexual dimorphism in plants without the confounding effects of genetic differences between separate male and female individuals

    Stoichiometric and catalytic solid-gas reactivity of rhodium bis-phosphine complexes

    Get PDF
    The complexes [Rh­(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)­L<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>] [L<sub>2</sub> = C<sub>4</sub>H<sub>6</sub>, (C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>, (CO)<sub>2</sub>, (NH<sub>3</sub>)<sub>2</sub>; Ar<sup>F</sup> = 3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>] have been synthesized by solid−gas reactivity via ligand exchange reactions with, in some cases, crystallinity retained through single-crystal to single-crystal transformations. The solid-state structures of these complexes have been determined, but in only one case (L<sub>2</sub> = (NH<sub>3</sub>)<sub>2</sub>) is the cation ordered sufficiently to enable its structural metrics to be determined by single crystal X-ray diffraction. The onward solid-state reactivity of some of these complexes has been probed. The bis-ammonia complex [Rh­(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)­(NH<sub>3</sub>)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>] undergoes H/D exchange at bound NH<sub>3</sub> when exposed to D<sub>2</sub>. The bis-ethene complex [Rh­(<sup>i</sup>Bu<sub>2</sub>PCH<sub>2</sub>CH<sub>2</sub>P<sup>i</sup>Bu<sub>2</sub>)­(C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>] undergoes a slow dehydrogenative coupling reaction to produce a material containing a 1:1 mixture of the butadiene complex and a postulated mono-ethene complex. The mechanisms of these processes have been probed by DFT calculations on the isolated Rh cations. All the solid materials were tested as heterogeneous catalysts for the hydrogenation of ethene. Complexes with weakly bound ligands (e.g., L<sub>2</sub> = (C<sub>2</sub>H<sub>4</sub>)<sub>2</sub>) are more active catalysts than those with stronger bound ligands (e.g., L = (CO)<sub>2</sub>). Surface-passivated crystals, formed through partial reaction with CO, allow for active sites to be probed, either on the surface or the interior of the single crystal

    Consequences of prairie fragmentation on the progeny sex ratio of a gynodioecious species, <em>Lobelia spicata</em> (Campanulaceae)

    No full text
    Habitat fragmentation of prairie ecosystems has resulted in increased isolation and decreased size of plant populations. In large populations, frequency-dependent selection is expected to maintain genetic diversity of sex determining factors associated with gynodioecy, that is, nuclear restorer genes that reverse cytoplasmic male sterility (nucleocytoplasmic gynodioecy). However, genetic drift will have a greater influence on small isolated populations that result from habitat fragmentation. The genetic model for nucleocytoplasmic gynodioecy implies that the proportion of female progeny produced by hermaphroditic and female plants will show more extreme differences in populations with reduced allelic diversity, and that restoration of male function will increase with inbreeding. We investigated potential impacts of effects resulting from reduced population sizes by comparison of progeny sex ratios produced by female and hermaphroditic plants in small and large populations of the gynodioecious prairie species, Lobelia spicata. A four-way contingency analysis of the impact of population size, population sex ratio, and maternal gender on progeny sex ratios showed that progeny sex ratios of hermaphroditic plants were strongly influenced by population size, whereas progeny sex ratios of female plants were strongly influenced by population sex ratio. Further, analysis of variation in progeny-type distribution indicated decreased restoration and increased loss of male function in smaller and isolated populations. These results are consistent with reduced allelic diversity or low allelic frequency at restorer loci in small and isolated populations. The consequent decrease in male function has the potential to impede seed production in these fragmented prairies.</p
    corecore