1,953 research outputs found

    Computational Study Of Molecular Hydrogen In Zeolite Na-A. II. Density Of Rotational States And Inelastic Neutron Scattering Spectra

    Get PDF
    Part I of this series [J. Chem. Phys. 111, 7599 (1999)] describes a simulation of H(2) adsorbed within zeolite Na-A in which a block Lanczos procedure is used to generate the first several (9) rotational eigenstates of H(2), modeled as a rigid rotor, and equilibrated at a given temperature via Monte Carlo sampling. Here, we show that rotational states are strongly perturbed by the electrostatic fields in the solid. Wave functions and densities of rotational energy states are presented. Simulated neutron spectra are compared with inelastic neutron scattering data. Comparisons are made with IR spectra in which rotational levels may appear due to rovibrational coupling. (C) 2001 American Institute of Physics

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    Methotrexate Encephalopathy: Two Cases in Adult Cancer Patients, Who Recovered with Pathophysiologically Based Therapy

    Get PDF
    Background/Objectives: Neurotoxicity is a serious and sometimes fatal adverse effect that can occur following methotrexate treatment. We describe two adult patients with hematological malignancies with methotrexate encephalopathy who recovered with dextromethorphan therapy. Results: Case 1 : A 24-year-old male with acute lymphoblastic leukemia developed the acute onset of bilateral facial weakness and slurred speech after his first treatment with high-dose intravenous methotrexate. The clinical scenario and a head magnetic resonance imaging supported a diagnosis of methotrexate encephalopathy. Treatment with dextromethorphan was coincident with recovery. Case 2 : A 65-year-old female with recurrent diffuse large B-cell lymphoma was treated with high- dose intravenous methotrexate. Two weeks after a cycle, she developed hypoactive delirium, marked lethargy, ocular ataxia, and a right-sided facial weakness. Within 2 days of starting dextromethorphan, there was improvement with clinical recovery. Conclusions: These two cases suggest that N -methyl d -aspartate receptor activation by homocysteine may play an important role in the pathogenesis of methotrexate neurotoxicity

    J D Bernal: philosophy, politics and the science of science

    Get PDF
    This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position

    Low angular momentum flow model of Sgr A* activity

    Full text link
    Sgr A* is the closest massive black hole and can be observed with the highest angular resolution. Nevertheless, our current understanding of the accretion process in this source is very poor. The inflow is almost certainly of low radiative efficiency and it is accompanied by a strong outflow and the flow is strongly variable but the details of the dynamics are unknown. Even the amount of angular momentum in the flow is an open question. Here we argue that low angular momentum scenario is better suited to explain the flow variability. We present a new hybrid model which describes such a flow and consists of an outer spherically symmetric Bondi flow and an inner axially symmetric flow described through MHD simulations. The assumed angular momentum of the matter is low, i.e. the corresponding circularization radius in the equatorial plane of the flow is just above the innermost stable circular orbit in pseudo-Newtonian potential. We compare the radiation spectrum from such a flow to the broad band observational data for Sgr A*.Comment: Proceedings of the AHAR 2008 Conference: The Universe under the Microscope; Astrophysics at High Angular Resolution, Bad Honef
    corecore