10,541 research outputs found

    Nonsingular Black Hole Evaporation and ``Stable'' Remnants

    Get PDF
    We examine the evaporation of two--dimensional black holes, the classical space--times of which are extended geometries, like for example the two--dimensional section of the extremal Reissner--Nordstrom black hole. We find that the evaporation in two particular models proceeds to a stable end--point. This should represent the generic behavior of a certain class of two--dimensional dilaton--gravity models. There are two distinct regimes depending on whether the back--reaction is weak or strong in a certain sense. When the back--reaction is weak, evaporation proceeds via an adiabatic evolution, whereas for strong back--reaction, the decay proceeds in a somewhat surprising manner. Although information loss is inevitable in these models at the semi--classical level, it is rather benign, in that the information is stored in another asymptotic region.Comment: 23 pages, 6 figures, harvmac and epsf, RU-93-12, PUPT-1399, NSF-ITP-93-5

    Nonsingular Lagrangians for Two Dimensional Black Holes

    Get PDF
    We introduce a large class of modifications of the standard lagrangian for two dimensional dilaton gravity, whose general solutions are nonsingular black holes. A subclass of these lagrangians have extremal solutions which are nonsingular analogues of the extremal Reissner-Nordstrom spacetime. It is possible that quantum deformations of these extremal solutions are the endpoint of Hawking evaporation when the models are coupled to matter, and that the resulting evolution may be studied entirely within the framework of the semiclassical approximation. Numerical work to verify this conjecture is in progress. We point out however that the solutions with non-negative mass always contain Cauchy horizons, and may be sensitive to small perturbations.Comment: 27 pages, three figures, RU-92-61. (Replaced version contains some corrections to incorrect equations. The zero temperature extremal geometry (the conjectured end-point of the Hawking evaporation) is not as stated in the previous version, but rather is a nonsingular analogue of the zero temperature M2=Q2M^2 = Q^2 Reissner-Nordstrom space-time.

    Diamondlike carbon protective coatings for IR materials

    Get PDF
    Diamondlike carbon (DLC) films have the potential to protect optical windows in applications where it is important to maintain the integrity of the specular transmittance of these films on ZnS and ZnSe infrared transmitting windows. The films must be adherent and durable such that they protect the windows from rain and particle erosion as well as chemical attack. In order to optimize the performance of these films, 0.1 micro m thick diamondlike carbon films were deposited on fused silica and silicon wafers, using three different methods of ion beam deposition. One method was sputter deposition from a carbon target using an 8 cm ion source. The merits of hydrogen addition were experimentally evaluated in conjunction with this method. The second method used a 30 cm hollow cathode ion source with hydrocarbon/Argon gases to deposit diamondlike carbon films from the primary beam at 90 to 250 eV. The third method used a dual beam system employing a hydrocarbon/Argon 30 cm ion source and an 8 cm ion source. Films were evaluated for adherence, intrinsic stress, infrared transmittance between 2.5 and 50 micro m, and protection from particle erosion. An erosion test using a sandblaster was used to give quantitative values of the protection afforded to the fused silica by the diamondlike carbon films. The fused silica surfaces protected by diamondlike carbon films were exposed to 100 micro m diameter SiO particles at 60 mi/hr (26.8/sec) in the sandblaster

    Quantum Moduli Spaces of N=1N=1 String Theories

    Get PDF
    Generically, string models with N=1N=1 supersymmetry are not expected to have moduli beyond perturbation theory; stringy non-perturbative effects as well as low energy field-theoretic phenomena such as gluino condensation will lift any flat directions. In this note, we describe models where some subspace of the moduli space survives non-perturbatively. Discrete RR symmetries forbid any inherently stringy effects, and dynamical considerations control the field-theoretic effects. The surviving subspace is a space of high symmetry; the system is attracted to this subspace by a potential which we compute. Models of this type may be useful for considerations of duality and raise troubling cosmological questions about string theory. Our considerations also suggest a mechanism for fixing the expectation value of the dilaton.Comment: 26 pages; uses harvmac. Footnote re fixing dilaton adde

    Black Hole Remnants and the Information Puzzle

    Full text link
    Magnetically charged dilatonic black holes have a perturbatively infinite ground state degeneracy associated with an infinite volume throat region of the geometry. A simple argument based on causality is given that these states do not have a description as ordinary massive particles in a low-energy effective field theory. Pair production of magnetic black holes in a weak magnetic field is estimated in a weakly-coupled semiclassical expansion about an instanton and found to be finite, despite the infinite degeneracy of states. This suggests that these states may store the information apparently lost in black hole scattering processes.Comment: 16 pages, revision has 5 figures uuencode

    Ten Dimensional Black Hole and the D0-brane Threshold Bound State

    Get PDF
    We discuss the ten dimensional black holes made of D0-branes in the regime where the effective coupling is large, and yet the 11D geometry is unimportant. We suggest that these black holes can be interpreted as excitations over the threshold bound state. Thus, the entropy formula for the former is used to predict a scaling region of the wave function of the latter. The horizon radius and the mass gap predicted in this picture agree with the formulas derived from the classical geometry.Comment: 11 pages, harvmac; v2: typos corrected, argument for the convergence of two integrals improved, v3: one ref. adde

    Examples of D=11 S-supersymmetric actions for point-like dynamical systems

    Get PDF
    A non standard super extensions of the Poincare algebra (S-algebra [1,2]), which seems to be relevant for construction of various D=11 models, are studied. We present two examples of actions for point-like dynamical systems, which are invariant under off-shell closed realization of the S-algebra as well as under local fermionic Îş\kappa-symmetry. On this ground, an explicit form of the S-algebra is advocated.Comment: 18 pages, LaTex fil
    • …
    corecore