243 research outputs found

    Sub-threshold resonances in few-neutron systems

    Get PDF
    Three- and four-neutron systems are studied within the framework of the hyperspherical approach with a local S-wave nn-potential. Possible bound and resonant states of these systems are sought as zeros of three- and four-body Jost functions in the complex momentum plane. It is found that zeros closest to the origin correspond to sub-threshold (nnn) (1/2-) and (nnnn) (0+) resonant states. The positions of these zeros turned out to be sensitive to the choice of the nnnn--potential. For the Malfliet- Tjon potential they are E(nnn)=-4.9-i6.9 (MeV) and E(nnnn)=-2.6-i9.0 (MeV). Movement of the zeros with an artificial increase of the potential strength also shows an extreme sensitivity to the choice of potential. Thus, to generate ^3n and ^4n bound states, the Yukawa potential needs to be multiplied by 2.67 and 2.32 respectively, while for the Malfliet-Tjon potential the required multiplicative factors are 4.04 and 3.59.Comment: Latex, 22 pages, no PS-figures, submitted to J.Phys.

    EPR studies of manganese centers in SrTiO3: Non-Kramers Mn3+ ions and spin-spin coupled Mn4+ dimers

    Full text link
    X- and Q-band electron paramagnetic resonance (EPR) study is reported on the SrTiO3 single crystals doped with 0.5-at.% MnO. EPR spectra originating from the S = 2 ground state of Mn3+ ions are shown to belong to the three distinct types of Jahn-Teller centres. The ordering of the oxygen vacancies due to the reduction treatment of the samples and consequent formation of oxygen vacancy associated Mn3+ centres are explained in terms of the localized charge compensation. The EPR spectra of SrTiO3: Mn crystals show the presence of next nearest neighbor exchange coupled Mn4+ pairs in the directions.Comment: 17 pages, 8 figure

    Compact and Loosely Bound Structures in Light Nuclei

    Get PDF
    A role of different components in the wave function of the weakly bound light nuclei states was studied within the framework of the cluster model, taking into account of orbitals "polarization". It was shown that a limited number of structures associated with the different modes of nucleon motion can be of great importance for such systems. Examples of simple and quite flexible trial wave functions are given for the nuclei 8^8Be, 6^6He. Expressions for the microscopic wave functions of these nuclei were found and used for the calculation of basic nuclear characteristics, using well known central-exchange nucleon-nucleon potentials.Comment: 19 pages, 3 ps figure

    Relativistic description of heavy tetraquarks

    Full text link
    The masses of the ground state and excited heavy tetraquarks with hidden charm and bottom are calculated within the relativistic diquark-antidiquark picture. The dynamics of the light quark in a heavy-light diquark is treated completely relativistically. The diquark structure is taken into account by calculating the diquark-gluon form factor. New experimental data on charmonium-like states above the open charm threshold are discussed. The obtained results indicate that X(3872), Y(4260), Y(4360), Z(4433) and Y(4660) can be tetraquark states with hidden charm.Comment: 6 pages, talk at the scientific session-conference of Nuclear Physics Department RAS ``Physics of fundamental interactions'', 25-30 November 2007, ITEP, Mosco

    Nonperturbative QCD Vacuum Effects in Nonlocal Quark Dynamics

    Get PDF
    A straightforward calculation reveals the essentially nonlocal character of the leading heavy QQˉQ\bar{Q} interaction arising from nonperturbative gluon field correlations in the model of a fluctuating QCD vacuum. In light of this quarkonium spin splitting ratio predictions which have supported the scalar confinement ansatz are reconsidered as a specific example of possible consequences for spectroscopy.Comment: Latex, 9 page

    Nonperturbative hyperfine contribution to the b1b_1 and h1h_1 meson masses

    Get PDF
    Due to the nonperturbative contribution to the hyperfine splitting the mass of the n1P1n^1P_1 state is strongly correlated with the center of gravity Mcog(n3PJ)M_{\rm cog}(n^3P_J) of the n3PJn^3P_J multiplet: M(n1P1)M(n^1P_1) is less than Mcog(n3PJ)M_{\rm cog}(n^3P_J) by about 40 MeV (20 MeV) for the 1P (2P) state. For b1(1235)b_1(1235) the agreement with experiment is reached only if a0(980)a_0(980) belongs to the 13PJ1^3P_J multiplet. The predicted mass of b1(21P1)b_1(2^1P_1) is ≈1620\approx 1620 MeV. For the isoscalar meson a correlation between the mass of h1h_1(1170) (h1(1380))(h_1(1380)) and Mcog(13PJ)M_{cog}(1^3P_J) composed from light (strange) quarks also takes place.Comment: 22 pages RevTe

    Surface acoustic wave attenuation by a two-dimensional electron gas in a strong magnetic field

    Full text link
    The propagation of a surface acoustic wave (SAW) on GaAs/AlGaAs heterostructures is studied in the case where the two-dimensional electron gas (2DEG) is subject to a strong magnetic field and a smooth random potential with correlation length Lambda and amplitude Delta. The electron wave functions are described in a quasiclassical picture using results of percolation theory for two-dimensional systems. In accordance with the experimental situation, Lambda is assumed to be much smaller than the sound wavelength 2*pi/q. This restricts the absorption of surface phonons at a filling factor \bar{\nu} approx 1/2 to electrons occupying extended trajectories of fractal structure. Both piezoelectric and deformation potential interactions of surface acoustic phonons with electrons are considered and the corresponding interaction vertices are derived. These vertices are found to differ from those valid for three-dimensional bulk phonon systems with respect to the phonon wave vector dependence. We derive the appropriate dielectric function varepsilon(omega,q) to describe the effect of screening on the electron-phonon coupling. In the low temperature, high frequency regime T << Delta (omega_q*Lambda /v_D)^{alpha/2/nu}, where omega_q is the SAW frequency and v_D is the electron drift velocity, both the attenuation coefficient Gamma and varepsilon(omega,q) are independent of temperature. The classical percolation indices give alpha/2/nu=3/7. The width of the region where a strong absorption of the SAW occurs is found to be given by the scaling law |Delta \bar{\nu}| approx (omega_q*Lambda/v_D)^{alpha/2/nu}. The dependence of the electron-phonon coupling and the screening due to the 2DEG on the filling factor leads to a double-peak structure for Gamma(\bar{\nu}).Comment: 17 pages, 3 Postscript figures, minor changes mad
    • 

    corecore