5,259 research outputs found
Short-term effects of CO₂-induced low pH exposure on target gene expression in Platynereis dumerilii
Objective: Increasing atmospheric CO₂ concentration are causing changes to the seawater carbonate chemistry, lowering the pH and we study potential impacts of these changes at the molecular level in a non-calcifying, marine polychaete species Platynereis dumerilii. Methods: we investigate the relative expression of carbonic anhydrase (CA), Na+/H+ exchangers (NHE), and calmodulin (CaM) genes from P. dumerilii under acidified seawater conditions (pH 7.8) induced by CO₂ using qPCR. Results: mRNA expression of CA in the CO₂-induced worms was significantly up-regulated at low pH conditions (pH 7.8, 1h), suggesting changes in acid-base balance. In contrast, the expression of NHE and CaM showed no significant change. In addition, we compare these results to a previous study using inorganic acid (HCl)-induced pH changes. Conclusions: results suggest that carbonate chemistry has an impact on gene expression that differs from pH-associated change. To our knowledge, this is the first study that compares low pH exposure experiments using HCl and CO₂ as the inducing agents
The L-CSC cluster at GSI for lattice QCD - The most power efficient supercomputer in the world in 2014
Exchange-correlation orbital functionals in current-density-functional theory: Application to a quantum dot in magnetic fields
The description of interacting many-electron systems in external magnetic
fields is considered in the framework of the optimized effective potential
method extended to current-spin-density functional theory. As a case study, a
two-dimensional quantum dot in external magnetic fields is investigated.
Excellent agreement with quantum Monte Carlo results is obtained when
self-interaction corrected correlation energies from the standard local
spin-density approximation are added to exact-exchange results. Full
self-consistency within the complete current-spin-density-functional framework
is found to be of minor importance.Comment: 5 pages, 2 figures, submitted to PR
A method to suppress dielectric breakdowns in liquid argon ionization detectors for cathode to ground distances of several millimeters
We present a method to reach electric field intensity as high as 400 kV/cm in
liquid argon for cathode-ground distances of several millimeters. This can be
achieved by suppressing field emission from the cathode, overcoming limitations
that we reported earlier
First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers
Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the
future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow
LArTPCs to operate in the high-multiplicity near detector environment of DUNE,
a new charge readout technology is required. Traditional charge readout
technologies introduce intrinsic ambiguities, combined with a slow detector
response, these ambiguities have limited the performance of LArTPCs, until now.
Here, we present a novel pixelated charge readout that enables the full 3D
tracking capabilities of LArTPCs. We characterise the signal to noise ratio of
charge readout chain, to be about 14, and demonstrate track reconstruction on
3D space points produced by the pixel readout. This pixelated charge readout
makes LArTPCs a viable option for the DUNE near detector complex.Comment: 13 pages, 9 figure
Relativistic nucleon optical potentials with isospin dependence in Dirac Brueckner Hartree-Fock approach
The relativistic optical model potential (OMP) for nucleon-nucleus scattering
is investigated in the framework of Dirac-Brueckner-Hartree-Fock (DBHF)
approach using the Bonn-B One-Boson- Exchange potential for the bare
nucleon-nucleon interaction. Both real and imaginary parts of isospin-dependent
nucleon self-energies in nuclear medium are derived from the DBHF approach
based on the projection techniques within the subtracted T -matrix
representation. The Dirac potentials as well as the corresponding Schrodinger
equivalent potentials are evaluated. An improved local density approximation is
employed in this analysis, where a range parameter is included to account for a
finite-range correction of the nucleon-nucleon interaction. As an example the
total cross sections, differential elastic scattering cross sections, analyzing
powers for n, p + 27Al at incident energy 100 keV < E < 250 MeV are calculated.
The results derived from this microscopic approach of the OMP are compared to
the experimental data, as well as the results obtained with a phenomenological
OMP. A good agreement between the theoretical results and the measurements can
be achieved for all incident energies using a constant value for the range
parameter.Comment: 10 pages, 16 figure
- …
