170,943 research outputs found
Physics of Interpulse Emission in Radio Pulsars
The magnetized induced Compton scattering off the particles of the
ultrarelativistic electron-positron plasma of pulsar is considered. The main
attention is paid to the transverse regime of the scattering, which holds in a
moderately strong magnetic field. We specifically examine the problem on
induced transverse scattering of the radio beam into the background, which
takes place in the open field line tube of a pulsar. In this case, the
radiation is predominantly scattered backwards and the scattered component may
grow considerably. Based on this effect, we for the first time suggest a
physical explanation of the interpulse emission observed in the profiles of
some pulsars. Our model can naturally account for the peculiar spectral and
polarization properties of the interpulses. Furthermore, it implies a specific
connection of the interpulse to the main pulse, which may reveal itself in the
consistent intensity fluctuations of the components at different timescales.
Diverse observational manifestations of this connection, including the moding
behavior of PSR B1822-09, the peculiar temporal and frequency structure of the
giant interpulses in the Crab pulsar, and the intrinsic phase correspondence of
the subpulse patterns in the main pulse and the interpulse of PSR B1702-19, are
discussed in detail. It is also argued that the pulse-to-pulse fluctuations of
the scattering efficiency may lead to strong variability of the interpulse,
which is yet to be studied observationally. In particular, some pulsars may
exhibit transient interpulses, i.e. the scattered component may be detectable
only occasionally.Comment: 28 pages, 2 figures. Accepted for publication in Ap
A compact high-flux cold atom beam source
We report on an efficient and compact high-flux Cs atom beam source based on
a retro-reflected two-dimensional magneto-optical trap (2D MOT). We realize an
effective pushing field component by tilting the 2D MOT collimators towards a
separate three-dimensional magneto-optical trap (3D MOT) in ultra-high vacuum.
This technique significantly improved 3D MOT loading rates to greater than atoms/s using only 20 mW of total laser power for the source. When
operating below saturation, we achieve a maximum efficiency of atoms/s/W
- …
