801 research outputs found
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
A Path to the Direct Detection of sub-GeV Dark Matter Using Calorimetric Readout of a Superfluid He Target
A promising technology concept for sub-GeV dark matter detection is
described, in which low-temperature microcalorimeters serve as the sensors and
superfluid He serves as the target material. A superfluid helium target has
several advantageous properties, including a light nuclear mass for better
kinematic matching with light dark matter particles, copious production of
scintillation light, extremely good intrinsic radiopurity, a high impedance to
external vibration noise, and a unique mechanism for observing phonon-like
modes via liberation of He atoms into a vacuum (`quantum evaporation'). In
this concept, both scintillation photons and triplet excimers are detected
using calorimeters, including calorimeters immersed in the superfluid. Kinetic
excitations of the superfluid medium (rotons and phonons) are detected using
quantum evaporation and subsequent atomic adsorption onto a microcalorimeter
suspended in vacuum above the target helium. The energy of adsorption amplifies
the phonon/roton signal before calorimetric sensing, producing a gain mechanism
that can reduce the techonology's recoil energy threshold below the calorimeter
energy threshold. We describe signal production and signal sensing
probabilities, and estimate electron recoil discrimination. We then simulate
radioactive backgrounds from gamma rays and neutrons. Dark matter - nucleon
elastic scattering cross-section sensitivities are projected, demonstrating
that even very small (sub-kg) target masses can probe wide regions of as-yet
untested dark matter parameter space
Calibration of liquid argon and neon detectors with
We report results from tests of Kr, as a calibration
source in liquid argon and liquid neon. Kr atoms are
produced in the decay of Rb, and a clear Kr
scintillation peak at 41.5 keV appears in both liquids when filling our
detector through a piece of zeolite coated with Rb. Based on this
scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a
resolution of 6% (/E) and 3.0 photoelectrons/keV in liquid neon with a
resolution of 19% (/E). The observed peak intensity subsequently decays
with the Kr half-life after stopping the fill, and we
find evidence that the spatial location of Kr atoms in
the chamber can be resolved. Kr will be a useful
calibration source for liquid argon and neon dark matter and solar neutrino
detectors.Comment: 7 pages, 12 figure
- …