2,696 research outputs found

    Electronic and structural properties of alkali doped SWNT

    Get PDF
    Comprehensive experiments on structural and transport properties of alkali intercalated single walled carbon nanotubes (SWNT) are presented. The increasing electron density was measured as a shift of the Drude-edge in optical reflectivity in-situ with progressive doping. In saturation-doped samples the Drude-edge shifts into the visible (to 25,000 - 30,000 cm— 1 for potassium and rubidium doped samples) and the samples have a golden-brown color, similar to stage I graphite. X-ray diffraction reveals a crystalline rope structure with expanded lattice constant, similar to results of Duclaux et al. The change in the low temperature divergence of the resistivity after degassing at high temperature and high vacuum and after K-doping is studied in-situ

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Full text link
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van-der-Waals and dielectric forces exerted by the tip which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode revealing a surprising honeycomb structure with amplitude of 50-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current II, but does not depend systematically on tunneling voltage VV or scan speed vscanv_{\rm scan}. The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 343-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscanv_{\rm scan}, that it is a simple enlargement effect of the atomic resolution as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Albeit we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene.Comment: 10 pages, 7 figures, modified, more detailed discussion on errors in vdW parameter

    Ordered low-temperature structure in K4C60 detected by infrared spectroscopy

    Get PDF
    Infrared spectra of a K4C60 single-phase thin film have been measured between room temperature and 20 K. At low temperatures, the two high-frequency T1u modes appear as triplets, indicating a static D2h crystal-field stabilized Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the known doublet above 250 K, a pattern which could have three origins: a dynamic Jahn-Teller effect, static disorder between "staggered" anions, or a phase transition from an orientationally-ordered phase to one where molecular motion is significant.Comment: 4 pages, 2 figures submitted to Phys. Rev.

    Symmetries and Ambiguities in the linear sigma model with light quarks

    Full text link
    We investigate the role of undetermined finite contributions generated by radiative corrections in a SU(2)×SU(2)SU(2)\times SU(2) linear sigma model with quarks. Although some of such terms can be absorbed in the renormalization procedure, one such contribution is left in the expression for the pion decay constant. This arbitrariness is eliminated by chiral symmetry.Comment: 9 pages. Added references through the text; an author was added due to an important contribution; corrected typos; the title also was changed. Submitted to Modern Physics Letter

    Small oscillations of a chiral Gross-Neveu system

    Get PDF
    We study the small oscillations regime (RPA approximation) of the time-dependent mean-field equations, obtained in a previous work, which describe the time evolution of one-body dynamical variables of a uniform Chiral Gross-Neveu system. In this approximation we obtain an analytical solution for the time evolution of the one-body dynamical variables. The two-fermion physics can be explored through this solution. The condition for the existence of bound states is examined.Comment: 21pages, Latex, 1postscript figur

    Apparent rippling with honeycomb symmetry and tunable periodicity observed by scanning tunneling microscopy on suspended graphene

    Get PDF
    Suspended graphene is difficult to image by scanning probe microscopy due to the inherent van der Waals and dielectric forces exerted by the tip, which are not counteracted by a substrate. Here, we report scanning tunneling microscopy data of suspended monolayer graphene in constant-current mode, revealing a surprising honeycomb structure with amplitude of 50-200 pm and lattice constant of 10-40 nm. The apparent lattice constant is reduced by increasing the tunneling current I, but does not depend systematically on tunneling voltage V or scan speed v(scan). The honeycomb lattice of the rippling is aligned with the atomic structure observed on supported areas, while no atomic corrugation is found on suspended areas down to the resolution of about 3-4 pm. We rule out that the honeycomb structure is induced by the feedback loop using a changing vscan, that it is a simple enlargement effect of the atomic lattice, as well as models predicting frozen phonons or standing phonon waves induced by the tunneling current. Although we currently do not have a convincing explanation for the observed effect, we expect that our intriguing results will inspire further research related to suspended graphene

    Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes

    Get PDF
    The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity, and Raman spectroscopy. These all give consistent results for the Fermi level downshift (Delta E(F)) induced by doping. We find Delta E(F) approximate to 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as E(F) moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes

    The Plasma Structure of the Cygnus Loop from the Northeastern Rim to the Southwestern Rim

    Full text link
    The Cygnus Loop was observed from the northeast to the southwest with XMM-Newton. We divided the observed region into two parts, the north path and the south path, and studied the X-ray spectra along two paths. The spectra can be well fitted either by a one-component non-equilibrium ionization (NEI) model or by a two-component NEI model. The rim regions can be well fitted by a one-component model with relatively low \kTe whose metal abundances are sub-solar (0.1--0.2). The major part of the paths requires a two-component model. Due to projection effects, we concluded that the low kTe (about 0.2 keV) component surrounds the high kTe (about 0.6 keV) component, with the latter having relatively high metal abundances (about 5 times solar). Since the Cygnus Loop is thought to originate in a cavity explosion, the low-kTe component originates from the cavity wall while the high-kTe component originates from the ejecta. The flux of the cavity wall component shows a large variation along our path. We found it to be very thin in the south-west region, suggesting a blowout along our line of sight. The metal distribution inside the ejecta shows non-uniformity, depending on the element. O, Ne and Mg are relatively more abundant in the outer region while Si, S and Fe are concentrated in the inner region, with all metals showing strong asymmetry. This observational evidence implies an asymmetric explosion of the progenitor star. The abundance of the ejecta also indicates the progenitor star to be about 15 M_sun.Comment: 24 pages, 9 figures, Astrophysical Journal in pres

    Ultraviolet and Infrared Divergences in Implicit Regularization: a Consistent Approach

    Full text link
    Implicit Regularization is a 4-dimensional regularization initially conceived to treat ultraviolet divergences. It has been successfully tested in several instances in the literature, more specifically in those where Dimensional Regularization does not apply. In the present contribution we extend the method to handle infrared divergences as well. We show that the essential steps which rendered Implicit Regularization adequate in the case of ultraviolet divergences have their counterpart for infrared ones. Moreover we show that a new scale appears, typically an infrared scale which is completely independent of the ultraviolet one. Examples are given.Comment: 9 pages, version to appear in Mod. Phys. Lett.

    Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes

    Get PDF
    The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity and Raman spectroscopy. These all give consistent results for the Fermi level downshift (δ EF) induced by doping. We find δ EF ≈ 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as EF moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes
    corecore