1,700 research outputs found
Optical control of electron spin coherence in CdTe/(Cd,Mg)Te quantum wells
Optical control of the spin coherence of quantum well electrons by short
laser pulses with circular or linear polarization is studied experimentally and
theoretically. For that purpose the coherent electron spin dynamics in a
n-doped CdTe/(Cd,Mg)Te quantum well structure was measured by time-resolved
pump-probe Kerr rotation, using resonant excitation of the negatively charged
exciton (trion) state. The amplitude and phase shifts of the electron spin beat
signal in an external magnetic field, that are induced by laser control pulses,
depend on the pump-control delay and polarization of the control relative to
the pump pulse. Additive and non-additive contributions to pump-induced signal
due to the control are isolated experimentally. These contributions can be well
described in the framework of a two-level model for the optical excitation of
the resident electron to the trion.Comment: 15 pages, 18 figure
A simple analytic model for astrophysical S-factors
We propose a physically transparent analytic model of astrophysical S-factors
as a function of a center-of-mass energy E of colliding nuclei (below and above
the Coulomb barrier) for non-resonant fusion reactions. For any given reaction,
the S(E)-model contains four parameters [two of which approximate the barrier
potential, U(r)]. They are easily interpolated along many reactions involving
isotopes of the same elements; they give accurate practical expressions for
S(E) with only several input parameters for many reactions. The model
reproduces the suppression of S(E) at low energies (of astrophysical
importance) due to the shape of the low-r wing of U(r). The model can be used
to reconstruct U(r) from computed or measured S(E). For illustration, we
parameterize our recent calculations of S(E) (using the Sao Paulo potential and
the barrier penetration formalism) for 946 reactions involving stable and
unstable isotopes of C, O, Ne, and Mg (with 9 parameters for all reactions
involving many isotopes of the same elements, e.g., C+O). In addition, we
analyze astrophysically important 12C+12C reaction, compare theoretical models
with experimental data, and discuss the problem of interpolating reliably known
S(E) values to low energies (E <= 2-3 MeV).Comment: 13 pages, 5 figures, Phys. Rev. C, accepte
Thermal X-Ray Pulses Resulting From Pulsar Glitches
The non-spherically symmetric transport equations and exact thermal evolution
model are used to calculate the transient thermal response to pulsars. The
three possible ways of energy release originated from glitches, namely the
`shell', `ring' and `spot' cases are compared. The X-ray light curves resulting
from the thermal response to the glitches are calculated. Only the `spot' case
and the `ring' case are considered because the `shell' case does not produce
significant modulative X-rays. The magnetic field () effect, the
relativistic light bending effect and the rotational effect on the photons
being emitted in a finite region are considered. Various sets of parameters
result in different evolution patterns of light curves. We find that this
modulated thermal X-ray radiation resulting from glitches may provide some
useful constraints on glitch models.Comment: 48 pages, 20 figures, submitted to Ap
Neutrino emission in neutron matter from magnetic moment interactions
Neutrino emission drives neutron star cooling for the first several hundreds
of years after its birth. Given the low energy ( keV) nature of this
process, one expects very few nonstandard particle physics contributions which
could affect this rate. Requiring that any new physics contributions involve
light degrees of freedom, one of the likely candidates which can affect the
cooling process would be a nonzero magnetic moment for the neutrino. To
illustrate, we compute the emission rate for neutrino pair bremsstrahlung in
neutron-neutron scattering through photon-neutrino magnetic moment coupling. We
also present analogous differential rates for neutrino scattering off nucleons
and electrons that determine neutrino opacities in supernovae. Employing
current upper bounds from collider experiments on the tau magnetic moment, we
find that the neutrino emission rate can exceed the rate through neutral
current electroweak interaction by a factor two, signalling the importance of
new particle physics input to a standard calculation of relevance to neutron
star cooling. However, astrophysical bounds on the neutrino magnetic moment
imply smaller effects.Comment: 9 pages, 1 figur
Spin-orbit coupled particle in a spin bath
We consider a spin-orbit coupled particle confined in a quantum dot in a bath
of impurity spins. We investigate the consequences of spin-orbit coupling on
the interactions that the particle mediates in the spin bath. We show that in
the presence of spin-orbit coupling, the impurity-impurity interactions are no
longer spin-conserving. We quantify the degree of this symmetry breaking and
show how it relates to the spin-orbit coupling strength. We identify several
ways how the impurity ensemble can in this way relax its spin by coupling to
phonons. A typical resulting relaxation rate for a self-assembled Mn-doped ZnTe
quantum dot populated by a hole is 1 s. We also show that decoherence
arising from nuclear spins in lateral quantum dots is still removable by a spin
echo protocol, even if the confined electron is spin-orbit coupled.Comment: 18 pages, 1 figur
Instability of Quark Matter Core in a Compact Newborn Neutron Star With Moderately Strong Magnetic Field
It is explicitly shown that if phase transition occurs at the core of a
newborn neutron star with moderately strong magnetic field strength, which
populates only the electron's Landau levels, then in the -equilibrium
condition, the quark core is energetically much more unstable than the neutron
matter of identical physical condition.Comment: Six pages REVTEX file, one .eps file (included
- …