3,246 research outputs found

    Ras/Raf-1/MAPK pathway mediates response to tamoxifen but not chemotherapy in breast cancer patients

    Get PDF
    <b>Purpose</b>: The expression and activation of the Ras/Raf-1/mitogen-activated protein kinase (MAPK) pathway plays an important role in the development and progression of cancer, and may influence response to treatments such as tamoxifen and chemotherapy. In this study we investigated whether the expression and activation of the key components of this pathway influenced clinical outcome, to test the hypothesis that activation of the MAPK pathway drives resistance to tamoxifen and chemotherapy in women with breast cancer. <b>Experimental Design</b>: Breast tumors from patients at the Glasgow Royal Infirmary and others treated within the BR9601 trial were analyzed for expression of the three Ras isoforms, total Raf-1, active and inactive forms of Raf-1 [pRaf(ser338) and pRaf(ser259), respectively], MAPK, and phospho-MAPK using an immunohistochemical approach. Analyses were done with respect to disease free-survival and overall survival. <b>Results</b>: Expression and activation of the Ras pathway was associated with loss of benefit from treatment with tamoxifen but not chemotherapy. Overexpression of pRaf(ser338) was associated with shortened disease-free and overall survival time in univariate analyses. Multivariate analysis suggested pRaf(ser338) was independent of known prognostic markers in predicting outcome following tamoxifen treatment (<i>P</i>=0.03). <b>Conclusion</b>: This study suggests that activation of the Ras pathway predicts for poor outcome on tamoxifen but not chemotherapy, and identifies pRaf(ser338) as a potential marker of resistance to estrogen receptor–targeted therapy. In addition, it suggests that expression of pRaf(ser338) could identify patients for whom tamoxifen alone is insufficient adjuvant systemic therapy, but for whom the addition of chemotherapy may be of benefit

    Processing Multi-Spectral Scanning Electron Microscopy Images for Quantitative Microfabric Analysis

    Get PDF
    Multi-spectral image analysis is a powerful method to characterise quantitatively the mineralogy and microfabric of soils, sediments, and other particulate materials. Backscattered scanning electron microscope (SEM) images of polished, resin-impregnated samples are grouped with the corresponding X-ray elemental maps using classification methods commonly used in remote sensing. However, the resulting mineral-segmented images require processing to render them suitable for quantification. In the past, this has been done subjectively and interactively, but the new objective methods described in this paper largely eliminate this subjectivity. An intensity gradient magnitude image of the original backscattered electron image is used as the basis of an interactive erosion and dilation sequence to generate skeleton outlines defining the edges of the mineral grains. The areas defined within the skeleton areas are then classified as a particular mineral according to the predominant feature in the corresponding mineral-segmented image. Subsequent processing tackles the problems of \u27holes\u27 defined by the skeleton outlines, and the over-segmentation associated with certain classes of mineral grain. Further methods to deal with particles made up of more than one mineral are considered. The matrix and porosity information is recombined to generate an image suitable for analysis using feature size statistics or general orientation analysis. The techniques described can be combined to permit batch processing of images. Applications of the techniques are illustrated on a soil from the East Anglian Breckland

    Domestic ventilation rates, indoor humidity and dust mite allergens : are our homes causing the asthma pandemic?

    Get PDF
    This paper is concerned with historical changes in domestic ventilation rates, relative humidity and the associated risk of house dust mite colonization. A controlled trial evaluated allergen and water vapour control measures on the level of house dust mite (HDM) Der p1 allergen and indoor humidity, concurrently with changes in lung function in 54 subjects who completed the protocol. Mechanical heat recovery ventilation units significantly reduced moisture content in the active group, while HDM allergen reservoirs in carpets and beds were reduced by circa 96%. Self reported health status confirmed a significant clinical improvement in the active group. The study can form the basis for assessing minimum winter ventilation rates that can suppress RH below the critical ambient equilibrium humidity of 60% and thus inhibit dust mite colonization and activity in temperate and maritime in' uenced climatic regions

    Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    Get PDF
    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.Comment: 11 pages, including 5 encapsulated postscript figure

    Time-based measurement of personal mite allergen bioaerosol exposure over 24 hour periods

    Full text link
    © 2016 Tovey et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Allergic diseases such as asthma and rhinitis are common in many countries. Globally the most common allergen associated with symptoms is produced by house dust mites. Although the bed has often been cited as the main site of exposure to mite allergens, surprisingly this has not yet been directly established by measurement due to a lack of suitable methods. Here we report on the development of novel methods to determine the pattern of personal exposure to mite allergen bioaerosols over 24-hour periods and applied this in a small field study using 10 normal adults. Air was sampled using a miniature time-based air-sampler of in-house design located close to the breathing zone of the participants, colocated with a miniature time-lapse camera. Airborne particles, drawn into the sampler at 2L/min via a narrow slot, were impacted onto the peripheral surface of a disk mounted on the hour-hand of either a 12 or 24 hour clock motor. The impaction surface was either an electret cloth, or an adhesive film; both novel for these purposes. Following a review of the time-lapse images, disks were post-hoc cut into subsamples corresponding to eight predetermined categories of indoor or outdoor location, extracted and analysed for mite allergen Der p 1 by an amplified ELISA. Allergen was detected in 57.2% of the total of 353 subsamples collected during 20 days of sampling. Exposure patterns varied over time. Higher concentrations of airborne mite allergen were typically measured in samples collected from domestic locations in the day and evening. Indoor domestic Der p 1 exposures accounted for 59.5% of total exposure, whereas total in-bed-asleep exposure, which varied 80 fold between individuals, accounted overall for 9.85% of total exposure, suggesting beds are not often the main site of exposure. This study establishes the feasibility of novel methods for determining the time-geography of personal exposure to many bioaerosols and identifies new areas for future technical development and clinical applications
    • …
    corecore