3,645 research outputs found

    Switching the magnetic configuration of a spin valve by current induced domain wall motion

    Full text link
    We present experimental results on the displacement of a domain wall by injection of a dc current through the wall. The samples are 1 micron wide long stripes of a CoO/Co/Cu/NiFe classical spin valve structure. The stripes have been patterned by electron beam lithography. A neck has been defined at 1/3 of the total length of the stripe and is a pinning center for the domain walls, as shown by the steps of the giant magnetoresistance curves at intermediate levels (1/3 or 2/3) between the resistances corresponding to the parallel and antiparallel configurations. We show by electric transport measurements that, once a wall is trapped, it can be moved by injecting a dc current higher than a threshold current of the order of magnitude of 10^7 A/cm^2. We discuss the different possible origins of this effect, i.e. local magnetic field created by the current and/or spin transfer from spin polarized current.Comment: 3 pages, 3 figure

    Thermal Effects on the Magnetic Field Dependence of Spin Transfer Induced Magnetization Reversal

    Full text link
    We have developed a self-aligned, high-yield process to fabricate CPP (current perpendicular to the plane) magnetic sensors of sub 100 nm dimensions. A pinned synthetic antiferromagnet (SAF) is used as the reference layer which minimizes dipole coupling to the free layer and field induced rotation of the reference layer. We find that the critical currents for spin transfer induced magnetization reversal of the free layer vary dramatically with relatively small changes the in-plane magnetic field, in contrast to theoretical predictions based on stability analysis of the Gilbert equations of magnetization dynamics including Slonczewski-type spin-torque terms. The discrepancy is believed due to thermal fluctuations over the time scale of the measurements. Once thermal fluctuations are taken into account, we find good quantitative agreement between our experimental results and numerical simulations.Comment: 14 pages, 4 figures, Submitted to Appl. Phys. Lett., Comparison of some of these results with a model described by N. Smith in cond-mat/040648

    Chiral nature of magnetic monopoles in artificial spin ice

    Full text link
    Micromagnetic properties of monopoles in artificial kagome spin ice systems are investigated using numerical simulations. We show that micromagnetics brings additional complexity into the physics of these monopoles that is, by essence, absent in spin models: besides a fractionalized classical magnetic charge, monopoles in the artificial kagome ice are chiral at remanence. Our simulations predict that the chirality of these monopoles can be controlled without altering their charge state. This chirality breaks the vertex symmetry and triggers a directional motion of the monopole under an applied magnetic field. Our results also show that the choice of the geometrical features of the lattice can be used to turn on and off this chirality, thus allowing the investigation of chiral and achiral monopoles.Comment: 10 pages, 4 figure

    A giant planet imaged in the disk of the young star Beta Pictoris

    Full text link
    Here we show that the ~10 Myr Beta Pictoris system hosts a massive giant planet, Beta Pictoris b, located 8 to 15 AU from the star. This result confirms that gas giant planets form rapidly within disks and validates the use of disk structures as fingerprints of embedded planets. Among the few planets already imaged, Beta Pictoris b is the closest to its parent star. Its short period could allow recording the full orbit within 17 years.Comment: 4 pages, 2 figures. Published online 10 June 2010; 10.1126/science.1187187. To appear in Scienc

    High resolution imaging of young M-type stars of the solar neighborhood: Probing the existence of companions down to the mass of Jupiter

    Full text link
    Context. High contrast imaging is a powerful technique to search for gas giant planets and brown dwarfs orbiting at separation larger than several AU. Around solar-type stars, giant planets are expected to form by core accretion or by gravitational instability, but since core accretion is increasingly difficult as the primary star becomes lighter, gravitational instability would be the a probable formation scenario for yet-to-be-found distant giant planets around a low-mass star. A systematic survey for such planets around M dwarfs would therefore provide a direct test of the efficiency of gravitational instability. Aims. We search for gas giant planets orbiting around late-type stars and brown dwarfs of the solar neighborhood. Methods. We obtained deep high resolution images of 16 targets with the adaptive optic system of VLT-NACO in the Lp band, using direct imaging and angular differential imaging. This is currently the largest and deepest survey for Jupiter-mass planets around Mdwarfs. We developed and used an integrated reduction and analysis pipeline to reduce the images and derive our 2D detection limits for each target. The typical contrast achieved is about 9 magnitudes at 0.5" and 11 magnitudes beyond 1". For each target we also determine the probability of detecting a planet of a given mass at a given separation in our images. Results. We derived accurate detection probabilities for planetary companions, taking into account orbital projection effects, with in average more than 50% probability to detect a 3MJup companion at 10AU and a 1.5MJup companion at 20AU, bringing strong constraints on the existence of Jupiter-mass planets around this sample of young M-dwarfs.Comment: Accepted for publication in A&

    beta Pic b position relative to the Debris Disk

    Full text link
    Context. We detected in 2009 a giant, close-by planet orbiting {\beta} Pic, a young star surrounded with a disk, extensively studied for more than 20 years. We showed that if located on an inclined orbit, the planet could explain several peculiarities of {\beta} Pictoris system. However, the available data did not permit to measure the inclination of {\beta} Pic b with respect to the disk, and in particular to establish in which component of the disk - the main, extended disk or the inner inclined component/disk-, the planet was located. Comparison between the observed planet position and the disk orientation measured on previous imaging data was not an option because of potential biases in the measurements. Aims. Our aim is to measure precisely the planet location with respect to the dust disk using a single high resolution image, and correcting for systematics or errors that degrades the precision of the disk and planet relative position measurements. Methods. We gathered new NaCo data at Ks band, with a set-up optimized to derive simultaneously the orientation(s) of the disk(s) and that of the planet. Results. We show that the projected position of {\beta} Pic b is above the midplane of the main disk. With the current data and knowledge on the system, this implies that {\beta} Pic b cannot be located in the main disk. The data rather suggest the planet being located in the inclined component.Comment: 13 pages, 6 figures, to appear in Astronomy and Astrophysic
    corecore