2,502 research outputs found

    Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter

    Full text link
    Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundary of these instabilities and the phase-coexistence region generally shrink with increasing temperature and is sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures.Comment: 21 pages, 29 figure

    Remodeling of the Metabolome during Early Frog Development

    Get PDF
    A rapid series of synchronous cell divisions initiates embryogenesis in many animal species, including the frog Xenopus laevis. After many of these cleavage cycles, the nuclear to cytoplasmic ratio increases sufficiently to somehow cause cell cycles to elongate and become asynchronous at the mid-blastula transition (MBT). We have discovered that an unanticipated remodeling of core metabolic pathways occurs during the cleavage cycles and the MBT in X.laevis, as evidenced by widespread changes in metabolite abundance. While many of the changes in metabolite abundance were consistently observed, it was also evident that different female frogs laid eggs with different levels of at least some metabolites. Metabolite tracing with heavy isotopes demonstrated that alanine is consumed to generate energy for the early embryo. dATP pools were found to decline during the MBT and we have confirmed that maternal pools of dNTPs are functionally exhausted at the onset of the MBT. Our results support an alternative hypothesis that the cell cycle lengthening at the MBT is triggered not by a limiting maternal protein, as is usually proposed, but by a decline in dNTP pools brought about by the exponentially increasing demands of DNA synthesis

    Geometry of the extreme Kerr black holes

    Full text link
    Geometrical properties of the extreme Kerr black holes in the topological sectors of nonextreme and extreme configurations are studied. We find that the Euler characteristic plays an essential role to distinguish these two kinds of extreme black holes. The relationship between the geometrical properties and the intrinsic thermodynamics are investigated.Comment: Latex version, 10 page

    Crop straw incorporation interacts with N fertilizer on N<sub>2</sub>O emissions in an intensively cropped farmland

    Get PDF
    Nitrogen (N) fertilization and straw incorporation strongly influence nitrous oxide (N2O) emissions from agricultural fields. An in-situ micro-plot experiment on intensively farmed winter wheat (Triticum aestivum L.) was conducted to investigate the source and rate of N2O emissions from soils following labeled 15N fertilization with and without straw incorporation. Four treatments, i.e., no N fertilizer and no straw incorporation (N0S0), straw incorporation only (N0S1), N fertilizer only (N1S0), and N fertilization plus straw incorporation (N1S1), were established in the experiment. The N2O emissions mainly occurred after N fertilization and lasted for approximately 1–2 weeks, accounting for 60%–67% of the wheat seasonal N2O emissions. Within the 6 days after basal fertilization and 2–4 days after top-dressing, most of the N2O fluxes (>50%) were derived from fertilizer. Thereafter, soil-derived N2O dominated the total N2O emissions and within 10–20 days after N fertilization, fertilizer-derived N2O became negligible. Fertilizer N and soil N both accounted for 40%–60% of the seasonal N2O emissions, which may be explained by the high soil N stock due to long-term high N fertilization in the region. This implies the similar roles of soil N pool and fertilizer N in N2O generation under intensively farmed soils. The N fertilization had a significant priming effect on the turnover of soil N, which contributed 21.02%–50.47% of the total N2O emissions. During the basal fertilization/first irrigation event, straw incorporation significantly (P < 0.05) stimulated CO2 fluxes both in N-fertilized and non-N-fertilized plots; however, after the top-dressing/second irrigation event, the significant increase of CO2 fluxes induced by straw incorporation was only observed in the N-fertilized treatment. Straw incorporation interacted with N fertilization, and tended to enhance N2O emissions in the basal fertilization and lower N2O emissions in the top-dressing period. In N-fertilized plots, the seasonal N2O emissions from straw-incorporated and straw-removed treatments were similar, indicating that straw incorporation enhanced the N supply without increasing the N2O emissions. Our study highlights that there are significant benefits of straw incorporation to soil fertility improvement; however, the long-term impacts of straw incorporation on greenhouse gas emissions should be further examined

    Evidence for coupling between collective state and phonons in two-dimensional charge-density-wave systems

    Full text link
    We report on a Raman scattering investigation of the charge-density-wave (CDW), quasi two-dimensional rare-earth tri-tellurides RRTe3_3 (RR= La, Ce, Pr, Nd, Sm, Gd and Dy) at ambient pressure, and of LaTe3_3 and CeTe3_3 under externally applied pressure. The observed phonon peaks can be ascribed to the Raman active modes for both the undistorted as well as the distorted lattice in the CDW state by means of a first principles calculation. The latter also predicts the Kohn anomaly in the phonon dispersion, driving the CDW transition. The integrated intensity of the two most prominent modes scales as a characteristic power of the CDW-gap amplitude upon compressing the lattice, which provides clear evidence for the tight coupling between the CDW condensate and the vibrational modes

    Quasinormal Modes in three-dimensional time-dependent Anti-de Sitter spacetime

    Full text link
    The massless scalar wave propagation in the time-dependent BTZ black hole background has been studied. It is shown that in the quasi-normal ringing both the decay and oscillation time-scales are modified in the time-dependent background.Comment: 8 pages and 7 figure

    Dual-tip-enhanced ultrafast CARS nanoscopy

    Get PDF
    Coherent anti-Stokes Raman scattering (CARS) and, in particular, femtosecond adaptive spectroscopic techniques (FAST CARS) have been successfully used for molecular spectroscopy and microscopic imaging. Recent progress in ultrafast nanooptics provides flexibility in generation and control of optical near fields, and holds promise to extend CARS techniques to the nanoscale. In this theoretical study, we demonstrate ultrafast subwavelentgh control of coherent Raman spectra of molecules in the vicinity of a plasmonic nanostructure excited by ultrashort laser pulses. The simulated nanostructure design provides localized excitation sources for CARS by focusing incident laser pulses into subwavelength hot spots via two self-similar nanolens antennas connected by a waveguide. Hot-spot-selective dual-tip-enhanced CARS (2TECARS) nanospectra of DNA nucleobases are obtained by simulating optimized pump, Stokes and probe near fields using tips, laser polarization- and pulse-shaping. This technique may be used to explore ultrafast energy and electron transfer dynamics in real space with nanometre resolution and to develop novel approaches to DNA sequencing.Comment: 11 pages, 6 figure

    Spin Relaxation in Single Layer Graphene with Tunable Mobility

    Full text link
    Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin-orbit and hyperfine couplings. In experiments, however, spin lifetimes in single layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune mobility between 2700 and 12000 cm2/Vs, we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.Comment: 13 pages, 5 figure

    Excited-state optically detected magnetic resonance of spin defects in hexagonal boron nitride

    Full text link
    Negatively charged boron vacancy (VB-) centers in hexagonal boron nitride (hBN) are promising spin defects in a van der Waals crystal. Understanding the spin properties of the excited state (ES) is critical for realizing dynamic nuclear polarization. Here, we report zero-field splitting in the ES of DES = 2160 MHz and an optically detected magnetic resonance (ODMR) contrast of 12% at cryogenic temperature. The ES has a g-factor similar to the ground state. The ES photodynamics is further elucidated by measuring the level anti-crossing of the VB- defects under varying external magnetic fields. In contrast to nitrogen vacancy (NV-) centers in diamond, the emission change caused by excited-state level anti-crossing (ESLAC) is more prominent at cryo-temperature than at room temperature. Our results provide important information for utilizing the spin defects of hBN in quantum technology
    • …
    corecore