Pure

Scotland's Rural College

Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland

Xu, C; Han, X; Ru, S; Cardenas, LM; Rees, RM; Wu, D; Wu, W; Meng, F

Published in: Geoderma

DOI: 10.1016/j.geoderma.2019.01.014

Print publication: 01/05/2019

Document Version Peer reviewed version

Link to publication

Citation for pulished version (APA):

Xu, C., Han, X., Ru, S., Cardenas, LM., Rees, RM., Wu, D., Wu, W., & Meng, F. (2019). Crop straw incorporation interacts with N fertilizer on N₂O emissions in an intensively cropped farmland. *Geoderma*, 341, 129-137. https://doi.org/10.1016/j.geoderma.2019.01.014

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Crop straw incorporation interacts with N fertilizer on N2O emissions in an intensively cropped
2	farmland
3	
4	Authors:
5	Cong Xu ¹ , Xiao Han ¹ , Shuhua Ru ² , Laura Cardenas ³ , Robert M Rees ⁴ , Di Wu ^{1, 5} ,
6	Wenliang Wu ¹ , Fanqiao Meng ^{1*}
7	¹ Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing Key
8	Laboratory of Farmland Soil Pollution Prevention and Remediation, College of
9	Resources and Environmental Sciences, China Agricultural University, Beijing,
10	100193, China
11	² Institute of Agro-resource and Environment, Hebei Academy of Agriculture and
12	Forestry Sciences, Shijiazhuang, 050051, China
13	³ Department of Sustainable Soils and Grassland Systems, Rothamsted Research-
14	North Wyke, Okehampton, Devon EX20 2SB, UK
15	⁴ Scotland's Rural College, EH9 3JG Edinburgh, UK
16	⁵ School of Environment, Natural Resources and Geography, Bangor University,
17	Bangor, Gwynedd, LL57 2UW, UK
18	E-mails:
19	Cong Xu, py-xc3721@163.com
20	Xiao Han, ilovebigapple@163.com
21	Shuhua Ru, shuhuaru@163.com
22	Laura Cardenas, laura.cardenas@rothamsted.ac.uk

- 23 Robert M Rees, bob.rees@sruc.ac.uk
- 24 Di Wu, d.wu@bangor.ac.uk
- 25 Wenliang Wu, wuwenl@cau.edu.cn
- ²⁶ Fanqiao Meng, mengfq@cau.edu.cn
- 27

²⁸ ***Corresponding Author:**

- ²⁹ Fanqiao Meng, No. 2 Yuanmingyuan West Road, Haidian, China Agricultural
- ³⁰ University, Beijing, 100193, China; e-mail: mengfq@cau.edu.cn.

31 Abstract

32 Nitrogen (N) fertilization and straw incorporation strongly influence nitrous oxide 33 (N2O) emissions from agricultural fields. An in-situ micro-plot experiment on 34 intensively farmed winter wheat (Triticum aestivum L.) was conducted to investigate the source and rate of N2O emissions from soils following labeled ¹⁵N fertilization 35 36 with and without straw incorporation. Four treatments, i.e., no N fertilizer and no 37 straw incorporation (N0S0), straw incorporation only (N0S1), N fertilizer only 38 (N1S0), and N fertilization plus straw incorporation (N1S1), were established in the 39 experiment. The N₂O emissions mainly occurred after N fertilization and lasted for 40 approximately 1-2 weeks, accounting for 60%-67% of the wheat seasonal N2O 41 emissions. Within the 6 days after basal fertilization and 2-4 days after top-dressing, 42 most of the N2O fluxes (>50%) were derived from fertilizer. Thereafter, soil-derived 43 N2O dominated the total N2O emissions and within 10-20 days after N fertilization, 44 fertilizer-derived N2O became negligible. Fertilizer N and soil N both accounted for 45 40%-60% of the seasonal N2O emissions, which may be explained by the high soil N 46 stock due to long-term high N fertilization in the region. This implies the similar roles 47 of soil N pool and fertilizer N in N2O generation under intensively farmed soils. The 48 N fertilization had a significant priming effect on the turnover of soil N, which 49 contributed 21.0%-28.6% of the seasonal N2O emissions. During the basal 50 fertilization/first irrigation event, straw incorporation significantly (P < 0.05) 51 stimulated CO2 fluxes both in N-fertilized and non-N-fertilized plots; however, after 52 the top-dressing/second irrigation event, the significant increase of CO₂ fluxes

53	induced by straw incorporation was only observed in the N-fertilized treatment. Straw
54	incorporation interacted with N fertilization, and tended to enhance N2O emissions
55	in the basal fertilization and lower N2O emissions in the top-dressing period. In N-
56	fertilized plots, the seasonal N2O emissions from straw-incorporated and straw-
57	removed treatments were similar, indicating that straw incorporation enhanced the N
58	supply without increasing the N2O emissions. Our study highlights that there are
59	significant benefits of straw incorporation to soil fertility improvement; however, the
60	long-term impacts of straw incorporation on greenhouse gas emissions should be
61	further examined.
62	
63	\mathbf{V}_{1}

63 Keywords: Nitrous oxide; ¹⁵N tracing; Straw incorporation; Nitrogen fertilization;
64 Intensive farming.

1. Introduction

66	Nitrous oxide (N2O) is a major greenhouse gas (Ding et al., 2015; Loick et al., 2017),
67	which has 265 times greater global warming potential than CO2 over a 100-year time
68	horizon (IPCC, 2014). Agricultural soils are the dominant emitters of N2O,
69	contributing 60% (Smith et al., 2007) and 74% (NCCC, 2012) of global and Chinese
70	N2O emissions, respectively. A better understanding of the pattern and sources of N2O
71	emissions from agricultural soils is therefore essential to develop novel and practical
72	strategies to limit climate change (Kim and Giltrap, 2017).
73	Northern China is a major intensive agricultural region (Tan et al., 2017; Xu et al.,
74	2017), covering about 3 million ha (Ding et al., 2007) and accounting for 67% and
75	28% of national wheat (Triticum aestivum L.) and maize (Zea mays L.) production
76	(Zhang et al., 2017b), respectively. High productivity in northern China largely relies
77	on excessive utilization of synthetic nitrogen (N) fertilizer at rates of >600 kg N ha ^{-1}
78	yr^{-1} (Ju <i>et al.</i> , 2009); this high level of N input is likely to result in high N ₂ O
79	emissions (Zhang et al., 2014b; Omonode et al., 2017) as the N supplied exceeds crop
80	demand (Linquist et al., 2012; Kim et al., 2013; Charles et al., 2017; Song et al.
81	2018) . Reduction in N2O emissions in northern China could therefore strongly
82	contribute to the mitigation of anthropogenic N2O emissions at national and global
83	scales (Tan et al., 2017; Xu et al., 2017). Both fertilizer N and soil N pools are
84	responsible for N2O emissions (Shepherd et al., 2015), so understanding the
85	partitioning of these sources is important both to characterize total emissions and also
86	to allow the precise calculation of emission factors of fertilizer N (IPCC, 2006).

87	Earlier field studies conducted in northern China presumed that the N2O emitted from
88	fertilizer N applied in the crop season was the predominant source of total N2O
89	emissions (Liu et al., 2012; Shi et al., 2013; Ying et al., 2017). However, many in-situ
90	studies using ¹⁵ N tracers carried out in Europe (Linzmeier et al., 2001; Garcia-Ruiz et
91	al., 2012), Oceania (Di and Cameron, 2008), and Africa (Gentile et al., 2008) found
92	that soil N could account for as much as 60%–99% of the total N2O emissions,
93	suggesting that the soil N pool contributed a large proportion of the N2O emissions.
94	Isotopic analysis using ¹⁵ N allows the source and amount of N2O emissions from
95	fertilizer N to be determined directly (Baggs, 2008; Loick et al., 2017), but most in-
96	situ ¹⁵ N tracing studies in northern China have not measured the ¹⁵ N ₂ O flux (Cai <i>et</i>
97	al., 1998; Xu et al., 2000; Cai et al., 2002; Ju et al., 2009) and thus accurately
98	distinguishing the N2O derived from fertilizer N and soil N pools has not been
99	achieved. Wan et al. (2009) used an incubation method to determine the ¹⁵ N ₂ O
100	derived from different N sources; however, their laboratory experiment was incapable
101	of analyzing the effects of natural field conditions (e.g. temperature, precipitation, and
102	plant growth), which were also essential in affecting ¹⁵ N2O emissions (Klumpp et al.,
103	2011). Thus, it is difficult to draw conclusions from the existing literature that
104	quantify the contribution of fertilizer N vs soil N to N2O emissions in northern China,
105	where excessive fertilization has been implemented for more than three decades (Gu
106	et al., 2017; Huang et al., 2017; Zhang et al., 2017b).
107	In addition, the high biomass production in northern China has generated vast quantities
108	of crop straw and residues (Zhou et al., 2017). A combination of synthetic N fertilizer

109	with straw incorporation is strongly recommended as an environmentally friendly
110	strategy by researchers (Liao et al., 2015; Zhao et al., 2015; Han et al., 2018) and
111	government agencies (Ministry of Environmental Protection-PRC, 1999; Ministry of
112	Agriculture-PRC, 2015) to improve soil fertility and minimize negative environmental
113	impacts. Incorporation of crop straw is generally believed to have positive effects on
114	soil carbon (C) and N dynamics (Chen et al., 2014; Ghimire et al., 2015; Meng et al.,
115	2017) and on the mitigation of N2O emissions (Frimpong and Baggs, 2010; Badagliacca
116	et al., 2016). However, results of previous studies on the efficacies of straw
117	incorporation on N2O emissions were inconsistent, showing either positive (Zhang et
118	al., 2015; Huang et al., 2017), negative (Xia et al., 2014; Yao et al., 2017), or neutral
119	effects (Zhang et al., 2017a). In addition, very few studies have considered the effects
120	of crop straw addition on the source of the generated N2O (Frimpong et al., 2011;
121	Garcia-Ruiz et al., 2012; Rezaei Rashti et al., 2017; Wu et al., 2017), which would help
122	to quantify total N2O emissions and inform mitigation actions.
123	In this study, we used ¹⁵ N tracing to evaluate the contribution of the soil N and the
124	fertilizer N to the total N2O emissions in the intensive farming region of northern
125	China. Measurements under straw-incorporated and straw-removed treatments were
126	also performed to investigate the impact of straw incorporation on N2O emissions and
127	their sources.

128 **2.** Materials and methods

129 2.1 Study site

¹³⁰ The experiment was conducted in Huantai county, Shandong province (36°58'N,

¹³¹ 117°59′E), a typical intensively farmed region in northern China (Bai *et al.*, 2011).

132 The region has a temperate monsoon climate (Shi *et al.*, 2013). Annual mean

133 precipitation and air temperature in the region is 543 mm and 12.5°C, respectively

134 (Tan et al., 2017). Prior to the experiment, two crops of winter wheat and summer

¹³⁵ maize per year had been farmed for about 30 years (since the 1980s). The experiment

136 was conducted in the winter wheat season (Oct. 2015 to Jun. 2016; Fig. 1); the

137 cumulative precipitation, mean air temperature, and mean soil temperature (0–10 cm)

¹³⁸ during the experimental period were 210 mm, 9.8°C, and 8.4°C, respectively. The soil

¹³⁹ in the experimental site is classified as aquic inceptisol (calcareous, clay loam; Shi et

140 *al.*, 2013). Soil pH, bulk density, total N content, and soil organic matter content of

141 top layer (0-20 cm) were 7.70 (water/soil = 2.5/1), 1.52 g cm⁻³, 1.00 g kg⁻¹, and 17.4

142 $g kg^{-1}$, respectively.

143 2.2 Experiment design and setup

144 Four treatments were established in our study: no N fertilizer and no straw

¹⁴⁵ incorporated (N0S0), straw incorporation only (N0S1), N fertilizer only (N1S0), and

146 N fertilization plus straw incorporation (N1S1). Each treatment was replicated three

147 times. The resultant 12 microplots $(1 \times 1 \text{ m}^2)$ were randomly established in the

148	experimental area with a path (1 m) between microplots. Each microplot was enclosed
149	with a PVC board, which was inserted into the soil at 1 m depth and the upper edge
150	was 15 cm above the soil surface. Before winter wheat sowing, phosphorus (P)
151	fertilizer (calcium superphosphate; 140 kg P2O5 ha ⁻¹) and potassium (K) fertilizer
152	(potassium sulfate; 60 kg K2O ha ⁻¹) were broadcasted in all microplots. The topsoil
153	(0–20 cm) was then plowed with a shovel to mix the P and K fertilizer with soil. In
154	the straw-incorporated treatments (N0S1 and N1S1), straw from the previous maize
155	season (0.96 kg m ^{-2} ; C/N: 76:1) was chopped at 3-5 cm and incorporated thoroughly
156	with the soil via plowing. Seeding rate for each micro-plot in the study was consistent
157	with that in local conventional farmland (i.e., 150 kg ha ⁻¹ ; about 330 seeds/micro-
158	plot). All microplots were surrounded by guard rows. After sowing, all microplots
159	were irrigated with 75 mm water. In N-fertilized treatments (N1S0 and N1S1), 15 N
160	labeled urea (125 kg N ha ^{-1} ; 10.21% atom % ^{15} N, Shanghai Chem-Industry Institute)
161	was dissolved in the irrigation water and applied uniformly to the microplot as a basal
162	fertilizer. At the jointing stage, irrigation was also applied with 75 mm of water, and
163	an additional 125 kg N (15 N labeled urea) ha $^{-1}$ was applied as top-dressing. The
164	detailed dates of field management events are shown in Fig. 1.

165 2.3 N₂O and CO₂ flux measurements

166 The closed chamber method was used to simultaneously measure the N2O and CO2

167 fluxes (Shi *et al.*, 2014; Tan *et al.*, 2017). The static chamber consisted of a PVC base

168 frame (20 cm width \times 30 cm length \times 15 cm height) with a water channel and a

169	removable cover (20 cm width \times 30 cm length \times 20 cm height). The cover box was
170	equipped with a sampling outlet and a thermometer in the upper plane. The chambers
171	were established in the between-row area of each microplot after plowing, and the
172	base was inserted to a depth of 15 cm in the soil. When collecting gas samples, we
173	filled the water channels with water to keep the chamber airtight.
174	Gas samples were obtained between 9:00 and 11:00 am. Five gas samples were taken
175	at 0, 8, 16, 24, and 32 min after chamber covering for flux measurements, and an
176	additional gas sample was obtained at 60 min closure time for 15 N2O analyses. 35 and
177	15 ml gas samples were collected for flux measurements and ¹⁵ N2O analyses,
178	respectively, using 35-mL polypropylene syringes fitted with 3-way stopcocks. All the
179	gas samples were stored in 12 ml evacuated vials (Labco, UK), and the vials for
180	15 N ₂ O analyses were helium-flushed. It was assumed that N ₂ O confined in the
181	headspace at the time of chamber closure was equivalent to atmospheric N2O and
182	contained no excess ¹⁵ N.
183	The N2O and CO2 samples were analyzed within the sampling day using an Agilent
184	7820A gas chromatograph (Agilent Technologies Inc., SCLA, CA, USA), which was
185	equipped with an electron capture detector (ECD) and a flame ionization detector
186	(FID). The carrier gas for N2O and CO2 analysis was high-purity N2, and the buffer
187	gas for ECD was 10% CO ₂ in pure N ₂ . The flow rates of the carrier gas were 25 and
188	30 mL min ^{-1} for the ECD and FID, respectively. Temperatures in the column ovens,
189	ECD, and FID were set at 55°C, 330°C, and 250°C, respectively. The N2O and CO2
190	fluxes were calculated from the linear or nonlinear changes in gas concentrations

determined within the 32-min closure period (Hutchinson and Mosier, 1981; Yan *et al.*, 2013).

193 Fluxes of N2O and CO2 were measured daily for a week after fertilization events. The ¹⁵ N₂O samples were also collected daily during the 7-day continuous sampling period 194 after fertilization events (samples on the 5th day after top-dressing were missing 195because of rain), and additional ¹⁵N₂O samples were taken on the 10th day after top-196 197 dressing. For the non-fertilization period, only gas fluxes were measured, and the 198 sampling was performed two times a week (samples were taken only once a week 199 over winter). 200 The cumulative N2O emissions were estimated by summing the daily mean fluxes of 201 measurement and no-measurement days, with daily fluxes of no-measurement days 202 being estimated as the arithmetic average of adjacent data (Huang et al., 2013; Tian et 203 al., 2013). 2.4 ¹⁵N₂O analysis and calculation 204

The ¹⁵N abundances of N₂O samples were analyzed in the Stable Isotope Facility of
the University of California at Davis. Stable isotope ratios of N were measured using
a Thermo Scientific GasBench + Precon gas concentration system interfaced to a
Thermo Scientific Delta V Plus isotope-ratio mass spectrometer (Thermo Electron
Inc., Bremen, Germany).
The collected N₂O sample for ¹⁵N analysis contained a mixture of atmospheric and

²¹¹ emitted N₂O. We used the following equation (Li *et al.*, 2016) to calculate the ¹⁵N

abundance (atom fraction 15 N) of emitted N₂O (*atom%* $^{15}N_{em}$):

- 213 atom% ${}^{15}N_{em}^{5} = (atom\%$ $N_{mix} \times C_{mix} atom\%$ ${}^{15}N_{uir} \times C_{uir})/C_{em}$ (1)
- where atom% ¹⁵N_{mix} and atom% ¹⁵N_{air} are the ¹⁵N abundances of headspace samples
- and ambient air (averaged 0.369% during the experiment), respectively; and *Cmix*, *Cair*,
- and Cem are the N2O concentration of headspace samples, ambient air, and emitted

217 N₂O respectively, and
$$C_{mix} = C_{air} + C_{em}$$

- ²¹⁸ The proportion of N₂O flux derived from fertilizer (% *N₂O-N derived from applied N*)
- ²¹⁹ was calculated according to the following equation (Nason and Myrold, 1991; Lampe
- 220 *et al.*, 2006; Vallejo *et al.*, 2014):
- ²²¹ % N₂O-N derived from applied N = $(^{15}Nap N_2 O_{em}/^{15}Nap \text{ fertilizer}) \times 100 (2)$
- where $^{15}Nap N_2O_{em}$ and $^{15}Nape$ fertilizer are the atom% excess of emitted N₂O
- 223 (atom%¹⁵Nem minus atom%¹⁵Nair) and ¹⁵N labeled urea (10.21% minus atom%
- ²²⁴ ¹⁵Nair), respectively. The product of the total cumulative N2O emissions and
- ²²⁵ the %*N*₂*O*-*N* derived from applied N was calculated as cumulative fertilizer-derived
- 226 N2O emissions. The cumulative fertilizer-derived N2O emissions after top-dressing
- 227 may be from the top-dressing fertilizer and also the basal fertilizer, because we used
- ²²⁸ ¹⁵ N labeled urea in both fertilization events.
- 229 2.5 Soil and plant sampling
- ²³⁰ In all microplots, soil samples were taken six times (i.e., before sowing, the 2nd day
- after basal fertilization, the 30th day after basal fertilization, the 5th day before top-
- ²³² dressing, the 2nd day after top-dressing, and on harvest). The dates of soil sampling

233	were shown in Fig. 1. On each soil sampling day, two soil cores (2.5 cm diameter) at
234	0–20 cm depth were taken within each microplot. Samples from the two soil cores
235	were sieved (2 mm) and mixed well. The boreholes were refilled with PVC columns
236	to avoid a change in gas exchange and water flow in the soil. The soil ammonium-N
237	(NH4+-N) and nitrate-N (NO3N) were extracted from the fresh soils (20 g) in 100
238	mL of 1 M KCl solution and analyzed by a colorimetric continuous flow analyzer
239	(AA3, SEAL Inc., Germany). At harvest, all the grain samples were thoroughly dried
240	in a 65°C oven for the determination of crop yield (dry matter).
241	2.6 Statistical analysis
242	Differences in cumulative N2O emissions, CO2 emissions, and crop yield were
243	determined by a <i>t</i> -test for least significant differences at $P < 0.05$. The values are
244	expressed as arithmetic mean $(n = 3)$ and standard error of the replications. The
245	quadratic and linear model was used to estimate relationships between %N2O-N
246	derived from applied fertilizer N and the day after fertilization. SPSS 22.0 software
247	(SPSS Inc., Chicago, IL, USA) was used for statistical analyses.
248	
249	3. Results

- 250 3.1 N₂O and CO₂ fluxes
- The peak N₂O emissions were mainly associated with N fertilization and/or irrigation
 events. The N1S0 and N1S1 treatments exhibited significantly higher N₂O fluxes

253	(peaking at 0.23–0.66 mg N ₂ O-N m ^{-2} h ^{-1}) than the N0S0 and N0S1 treatments
254	(peaking at 0.04–0.07 mg N ₂ O-N m ⁻² h ⁻¹ ; $P < 0.05$; Fig. 2). This significant ($P <$
255	0.05) increase of N2O fluxes induced by fertilization lasted for about 7 days after
256	basal fertilization and 10 days after top-dressing. Thereafter, N2O fluxes of all
257	treatments remained at <0.02 mg N ₂ O-N $m^{-2} h^{-1}$, and no statistically significant
258	differences were found between N-fertilized and non-N-fertilized treatments ($P >$
259	0.05). In the basal fertilization period, the peak N2O fluxes tended to be higher in
260	N1S1 treatments (0.66 mg N ₂ O-N m ^{-2} h ^{-1} ; Fig. 2d) than that in N1S0 treatments (0.51
261	mg N2O-N $m^{-2} h^{-1}$; Fig. 2c). During the top-dressing period, the opposite trend was
262	observed, i.e., 0.23 and 0.48 mg N2O-N $m^{-2} h^{-1}$ for the N1S1 and N1S0 treatments,
263	respectively (Fig. 2d, c), although no overall significant difference in N2O fluxes was
264	found (<i>P</i> > 0.05).
265	During the basal fertilization/first irrigation event, straw incorporation strongly
266	stimulated CO2 fluxes both in non-N-fertilized plots and N-fertilized plots: peak
267	values of CO ₂ flux from N0S1 and N1S1 (115–127 mg CO ₂ -C $m^{-2} h^{-1}$) were about
268	2.6-fold higher ($P < 0.05$) than those from N0S0 and N1S0 (39–52 mg CO ₂ -C m ⁻²
269	h^{-1} ; $P < 0.05$; Fig. 3a, b). However, in the top-dressing/second irrigation period, this
270	significant increase of CO2 fluxes after straw-incorporation was only observed in N-
271	fertilized plots (N1S1; Fig. 3b): the peak CO ₂ fluxes in the N1S1 treatment (134.6 \pm
272	7.92 mg CO ₂ -C m ^{-2} h ^{-1}) was significantly higher than that in the N0S1 treatment
273	$(82.0 \pm 7.84 \text{ mg CO}_2\text{-C m}^{-2} \text{ h}^{-1}; P < 0.05).$

274 3.2 Cumulative CO₂ and N₂O emissions and crop yield

275	In non-N-fertilized plots, the cumulative N2O emissions of N0S1 treatments (368.20 g
276	N ₂ O-N ha ^{-1}) were 45% higher than those of N0S1 treatments (253.82 g N ₂ O-N ha ^{-1});
277	however, in the N-fertilized plots, the cumulative N2O emissions in the straw-
278	incorporated and straw-removed treatments were similar (928.40 and 950.87 g $N_2\text{O-N}$
279	ha ⁻¹ for N1S1 and N1S0, respectively; Table 1). The N fertilization significantly
280	increased the cumulative N2O emissions by 152%-274% (928.40-950.87 vs. 253.82-
281	368.20 g N ₂ O-N ha ⁻¹ ; $P < 0.05$; Table 1).
282	Seasonal CO ₂ emissions increased significantly after straw incorporation, and this was
283	more apparent in non-N-fertilized treatments, i.e., N0S1 exhibited a 43% increase of
284	CO ₂ emission compared with N0S0 ($P < 0.05$; Table 1). No significant differences in
285	seasonal CO2 emissions were found between N-fertilized treatments (N1S0 and
286	N1S1) and their corresponding non-N-fertilized treatments (N0S0 and N0S1; $P >$
287	0.05).
288	The crop yield of N1S0 and N1S1 treatments tended to be higher than that of non-N-
289	fertilized treatments (N0S0 and N0S1, respectively), but the differences were not
290	statistically significant ($P > 0.05$; Table 1). In N-fertilized plots, straw incorporation
291	slightly increased the wheat yield, whereas in non-N-fertilized plots, the crop yields of
292	the straw incorporation tended to decline, but no statistical differences were observed
293	(<i>P</i> > 0.05; Table 1).

295	The proportion of N2O fluxes derived from the fertilizer N reached maximum (55%-
296	61%) on the 4 th or 5 th day after basal fertilization and then decreased to $<50\%$ on the
297	7 th day after basal fertilization (Fig. 4a). This tendency was well described by a
298	quadratic model ($P < 0.05$; $R^2 = 0.96$ and 0.92 for N1S0 and N1S1, respectively; Fig.
299	4a). According to this estimation, the percentage of daily N2O emissions derived from
300	fertilizer N was close to zero on the 10 th day after basal fertilization. During the top-
301	dressing period (7 to 17 Apr.), the percentage of fertilizer-derived N2O reached
302	maximum (56%–59%) on the 2^{nd} day after fertilization and then declined afterwards
303	(Fig. 4b). A linear model estimated that the proportion of fertilizer-derived N2O was
304	negligible on about the 20 th day after top-dressing ($P < 0.05$; $R^2 = 0.60$ and 0.87 for
305	N1S0 and N1S1, respectively; Fig. 4b). Straw incorporation had no significant effect
306	on the ratio of fertilizer-derived N ₂ O fluxes ($P > 0.05$; Fig. 4). The cumulative
307	fertilizer-derived N2O emissions after basal fertilization were 209 and 210 g N2O ha^{-1}
308	for N1S0 and N1S1 treatments (Fig. 5a), respectively, and in the top-dressing period,
309	the corresponding N2O emissions were 78 and 60 g N2O-N ha^{-1} , respectively (Fig.
310	5b).
311	Fertilizer N-derived N2O emissions accounted for 41.4%–53.8% of total emissions in
312	the basal fertilization period and 51.8%–51.9% in the top-dressing period (Table 2).
313	The soil-derived N ₂ O emissions from N-fertilized plots (217–295 g N ₂ O-N ha^{-1} after
314	basal fertilization and 55–73 g N ₂ O-N ha^{-1} after top-dressing) were significantly
315	higher than those from non-N-fertilized plots (24-41 g N ₂ O-N ha^{-1} after basal

316	fertilization and 30–31 g N ₂ O-N ha ⁻¹ after top-dressing; $P < 0.05$; Fig. 5). This
317	indicates that the N2O emissions from the soil N pool were significantly promoted by
318	the N fertilization. Straw incorporation tended to enhance N2O emissions after the
319	basal-fertilization (Fig. 5a) but decreased after the top-dressing period (Fig. 5b).
320	However, straw incorporation had no significant effect on the cumulative N2O
321	emissions contributed by the fertilizer and soil N ($P > 0.05$; Fig. 5 and Table 2).
322	3.4 Soil N
323	Before the wheat was sown, soil NO3N concentrations under the four treatments
324	were all <10 mg kg ⁻¹ (Fig. 6a). Application of N fertilizer significantly ($P < 0.05$)
325	increased the NO ₃ N concentrations to 45.4-48.2 mg N kg ^{-1} during the basal
326	fertilization period, and 25.8–32.7 mg N kg ^{-1} during the top-dressing period (Fig. 6a).
327	On the 2 nd day after top-dressing (9 Apr.), N1S1 was observed to have a remarkable
328	effect of reducing soil NO3N concentrations compared with N1S0; however, in other
329	periods, no apparent differences of soil NO ₃ - ($P > 0.05$) were detected between N1S1
330	and N1S0 treatments (Fig. 6a). Soil NH4+-N concentrations always remained at a low
331	level ($<3.5 \text{ mg kg}^{-1}$), and there were no significant differences among treatments (Fig.
332	6b).

4. Discussion

335 4.1 Duration of N₂O emissions

336	The N2O emission peaks occurred mainly after N fertilization events and lasted for
337	approximately 1–2 weeks (Fig. 2), which is consistent with a number of recent studies
338	(Bell et al., 2015; Hinton et al., 2015; Tan et al., 2017; Yao et al., 2017). This was
339	mainly attributed to the high soil mineral N content after fertilization events (Ju et al.,
340	2011; Luo et al., 2017; Zhang et al., 2019; Fig. 6). In our study, the N2O emission
341	peaks occurring during the fertilization period (7 days after basal fertilization and 10
342	days after top-dressing), i.e., 578–620 g N ₂ O-N ha ^{-1} , accounting for 59.6%–67.2% of
343	the seasonal N2O emissions (Fig. 2). Likewise, Ding et al. (2013) reported that up to
344	82%-98% of the fertilizer-induced N2O emissions were emitted within the two weeks
345	following fertilization. That is, although the growth period of winter wheat lasted for
346	more than 240 days in the northern China, most N2O was emitted in the initial 1-2
347	weeks following each fertilization event. This finding highlights that N2O mitigation
348	measures in the wheat season should mainly target the fertilization periods.
349	The proportion of fertilizer-derived N2O fluxes declined to $<50\%$ since the 7 th day
350	after basal fertilization (Fig. 4a) and the 2 nd -4 th day after top-dressing (Fig. 4b).
351	Within 10-20 days after fertilization, fertilizer-derived N2O became negligible (Fig.
352	4a, b). This could be explained by the reduced fertilizer-derived reactive N in soil due
353	to microbial immobilization (Cai et al., 2017), plant uptake (Omonode et al., 2017),
354	and losses through NH3 volatilization (Xia et al., 2017) and nitrate leaching (Huang et

355	al., 2017), etc. Similar findings were reported by a previous 15 N tracing study
356	conducted in Europe (Linzmeier et al., 2001). These results suggest that the duration
357	of N2O measurement to assess the fertilizer contribution is shorter than previously
358	assumed. Intergovernmental Panel on Climate Change (IPCC) guidelines for
359	estimating N2O emission factors recommend that emission measurements are made
360	for one year following fertilizer application (IPCC, 2006). Our research suggests that
361	direct fertilizer emissions may occur over a period of weeks, and it may be
362	appropriate to reassess the period over which emission factors are calculated for
363	greenhouse gas inventory purposes.
364	4.2 Sources of N2O emissions
365	Fertilizer-derived N2O accounted for 41.4%–53.8% of the cumulative N2O emissions
365 366	Fertilizer-derived N ₂ O accounted for 41.4%–53.8% of the cumulative N ₂ O emissions in the fertilization period (Table 2), which was higher than regions in Europe (10%–
366	in the fertilization period (Table 2), which was higher than regions in Europe (10%–
366 367	in the fertilization period (Table 2), which was higher than regions in Europe (10%–40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was
366 367 368	in the fertilization period (Table 2), which was higher than regions in Europe (10%–40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was most likely to be related to the significantly higher N application rate in the
366 367 368 369	in the fertilization period (Table 2), which was higher than regions in Europe (10%–40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was most likely to be related to the significantly higher N application rate in the intensively farmed region of northern China (250 kg N ha ⁻¹ season ⁻¹ in our study)
366 367 368 369 370	in the fertilization period (Table 2), which was higher than regions in Europe (10%–40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was most likely to be related to the significantly higher N application rate in the intensively farmed region of northern China (250 kg N ha ⁻¹ season ⁻¹ in our study) compared with Linzmeier <i>et al.</i> (2001) (160 kg N ha ⁻¹ season ⁻¹) and Di and Cameron
366 367 368 369 370 371	in the fertilization period (Table 2), which was higher than regions in Europe (10%–40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was most likely to be related to the significantly higher N application rate in the intensively farmed region of northern China (250 kg N ha ⁻¹ season ⁻¹ in our study) compared with Linzmeier <i>et al.</i> (2001) (160 kg N ha ⁻¹ season ⁻¹) and Di and Cameron (2008) (200 kg N ha ⁻¹ yr ⁻¹). Our finding highlights that there is a great potential for
366 367 368 369 370 371 372	in the fertilization period (Table 2), which was higher than regions in Europe (10%– 40%; Linzmeier <i>et al.</i> , 2001) and Oceania (<4%; Di and Cameron, 2008). This was most likely to be related to the significantly higher N application rate in the intensively farmed region of northern China (250 kg N ha ⁻¹ season ⁻¹ in our study) compared with Linzmeier <i>et al.</i> (2001) (160 kg N ha ⁻¹ season ⁻¹) and Di and Cameron (2008) (200 kg N ha ⁻¹ yr ⁻¹). Our finding highlights that there is a great potential for lowering fertilizer-derived N2O emissions by optimizing the N application rate in the

376	high risk of N2O generation from soil N. Background cumulative N2O emissions
377	(N2O emissions from non-N-fertilized treatments) in our study were 0.25-0.37 kg
378	N2O-N ha^{-1} season ⁻¹ (Table 1), comparable to the values (0.22–0.47 kg N2O-N ha^{-1}
379	season ⁻¹) reported in previous site-specific studies (Cui et al., 2012; Hu et al., 2013;
380	Huang et al., 2013) and a meta-analysis conducted in the same region (Xu et al.,
381	2017). The results of this study showed that the soil-derived N2O emissions in the
382	fertilized plots were significantly higher than the background N2O emissions ($P <$
383	0.05; Fig. 5), which could be attributed to the priming effect of N fertilizer on the soil
384	N pool (Linzmeier et al., 2001; Lampe et al., 2006; Di and Cameron, 2008). This
385	priming effect was most likely to have resulted from enhanced native soil N turnover
386	induced by the increased microbial activity and root exudation (Kuzyakov et al.,
387	2000; Pearce, 2016; Liu et al., 2017). Quantifying the contribution of fertilizer-
388	derived N to the N2O released by background emissions is a challenging task, but is
389	important because background emissions are used in the calculation of emission
390	factors (IPCC, 2006). However, these emission sources are difficult to separate in the
391	field studies. Our findings indicate that the overall N2O flux needs to be understood in
392	the context of an interaction between fertilizer and soil N pools.
393	Farmland in northern China has received continuously high synthetic N applications
394	(600 kg N ha ^{-1} yr ^{-1}) over a long period (> 30 years). Consequently, large amounts of
395	residual N have accumulated in soil (Cui et al., 2013), which represents a large source
396	of N2O emissions in the subsequent crop season (Grant et al., 2006). Our findings
397	show that N ₂ O emissions induced by the priming effect accounted for 43.7% – 87.6%

398	of soil-derived N ₂ O emissions (Fig. 5) and 21.0%–50.5% of the total emissions (Table
399	2), indicating that the risk of N2O loss from the accumulated soil N could be
400	intensified by N fertilization. In this case, optimum fertilization on the basis of soil
401	residual N testing could be implemented in the region (Ju et al., 2004; Wu et al.,
402	2014; Zhang et al., 2014a) to increase N use efficiency and reduce the risk of N2O
403	loss from both fertilizer N and the soil N pools.
404	4.3 Impacts of straw incorporation on N2O emissions
405	In N-fertilized treatments, straw incorporation tended to increase N2O emissions in the
406	basal fertilization period (Fig. 5a) but the opposite tendency was observed in the top-
407	dressing period (Fig. 5b). For maize straw with a high C/N ratio (76:1 in our study),
408	microbes would immobilize the N within soil to decompose the maize straw (Abalos et
409	al., 2013; Lin et al., 2013; Lehtinen et al., 2014). In the basal fertilization period, N
410	uptake by plants was negligible, and soil N may be adequate for the decomposition of
411	straw, as indicated by the similar CO ₂ fluxes between N0S1 (Fig. 3a) and N1S1 (Fig.
412	3b) treatments (Esther et al., 2014). Therefore, microbial N immobilization had no
413	apparent effect on soil mineral N content after basal fertilization (Fig. 6). The increased
414	N2O emissions under straw-incorporated treatments (Fig. 5a) were probably derived
415	from straw decomposition (Vigil et al., 1991; Frimpong et al., 2010). However, in the
416	top-dressing period (at the jointing stage), significant increases of CO2 fluxes after
417	straw incorporation were only observed in N-fertilized plots (N1S1; Fig. 3b),
418	suggesting that soil available N was the limiting factor of straw decomposition (López-

Bellido et al., 2005; Song et al., 2011; Chen et al., 2014; Li et al., 2017). The 419 420 competition for available N between microorganisms and plants in straw-incorporated 421 plots could have resulted in a decreased NO₃--N concentration (Fig. 6a) and lower N₂O 422 emissions (Fig. 5b). Our results demonstrate that crop straw interacts with N 423 fertilization to control N2O emissions in intensively farmed soils. 424 At the seasonal scale, when no N fertilizer was applied, 45% higher N2O emissions were observed under the straw-incorporated (368 g N2O-N ha⁻¹ season⁻¹) treatments 425 relative to the treatments without straw (254 g N₂O-N ha⁻¹ season⁻¹); however, in N-426 427 fertilized plots, the N2O emissions from straw-incorporated and straw-removed treatments were similar (928 vs. 951 g N₂O-N ha⁻¹ season⁻¹: Table 1). Similar 428 429 observations were reported by previous meta-analyses (Shan and Yan, 2013; Xu et al., 430 2017). In the non-N-fertilized soils where N2O production was relatively constrained 431 by the limited available N (Kim and Giltrap, 2017), straw input supplied about 60 kg 432 N ha⁻¹ in our study (N% = 0.69), nearly the same level as soil mineral N quantity (77) kg N ha⁻¹, 0–100 cm; data not shown), which provided an important substrate for N₂O 433 434 generation (Kumar and Goh, 1999; Chen et al., 2013; Huang et al., 2017). However, 435 in the N-fertilized plots, N2O emissions induced by straw N addition were probably 436 overwhelmed by the intensive N fertilization (Yao et al., 2017), although straw-437 incorporated treatments recieved about 24% higher total N input than straw-removed 438 treatments. Our results suggest that straw incorporation could enhance the N supply 439 without increasing the N2O emissions in intensively managed soils. 440 It should be mentioned that the soil temperature during the wheat season in northern

China (10.8°C) is relatively low, which resulted in a moderate microbial activity and
slow straw decomposition rate (Hartmann *et al.*, 2014; Warren Raffa *et al.*, 2015).
Thus, it is probably not possible to critically examine significant effects of straw
incorporation in just one cropping season. Further in-situ ¹⁵N tracer studies should be
conducted to assess the long-term effect of straw incorporation on the rate and source
of N₂O emissions.

447 Conclusions

This in-situ ¹⁵N tracing study provided an insight into the rate and source of N₂O 448 449 emissions and the effect of straw incorporation on N2O emissions in the intensively 450 farmed soils of northern China. About 60%-67% of the wheat seasonal N2O 451 emissions were lost in the one to two weeks following fertilization events. Within 10-452 20 days after fertilization, fertilizer-derived N2O became negligible, suggesting that it 453 may be appropriate to reassess the period over which emission factors are calculated 454 for greenhouse gas inventory purposes. Because of the long duration of high N input 455 in this region, fertilizer N and soil N both accounted for about 40%-60% of the 456 seasonal N2O emissions in the fertilization period, which implies equivalent roles of 457 the soil N pool and fertilizer N in N2O generation in long-term intensively farmed 458 soils. During the basal fertilization/first irrigation events, straw incorporation 459 significantly stimulated CO₂ fluxes both in N-fertilized and non-N-fertilized plots; 460 however, after the top-dressing/second irrigation events, the significant increase of 461 CO2 fluxes induced by straw incorporation was only observed in the N-fertilized

462	treatment. Application of N fertilizer had a significant priming effect on the soil N
463	pool, which may increase the risk of N2O loss from N accumulated in the soil. Straw
464	incorporation interacted with N fertilization, and exhibited a tendency of enhancing
465	N2O emissions in the basal fertilization and lowering N2O emissions in the top-
466	dressing period. In N-fertilized plots, the seasonal N2O emissions from straw-
467	incorporated and straw-removed treatments were similar, indicating straw
468	incorporation enhanced N supply without increasing the N2O emissions. Our study
469	highlights the necessity of examining the long-term impacts of N fertilization and
470	straw incorporation on greenhouse gas emissions.
471	
472	Acknowledgements
473	Special thanks to the anonymous reviewers for their helpful comments that significantly
474	improved the manuscript.
475	Funding
476	This work was supported by the National Key Research and Development Program
477	(grant number 2017YFD0800605 and 2016YFD0201200) and the Biotechnology and
478	Biological Sciences Research Council (grant numbers BB/P01268X/1 and
479	BB/N013484/1).

480 **Declarations of interest**: none.

481 **References**

482	Abalos, D., Sa	anz-Cobena, A.,	Garcia-Torres.	L., Groeniger	n. J.W.V., Valle	eio. A., 2013.

- 483 Role of maize stover incorporation on nitrogen oxide emissions in a non-irrigated
- 484 Mediterranean barley field. Plant Soil 364, 357-371.
- 485 https://doi.org/10.1007/s11104-012-1367-4.
- 486 Badagliacca, G., Ruisi, P., Rees, R.M., Saia, S., 2016. An assessment of factors
- 487 controlling N2O and CO2 emissions from crop residues using different
- 488 measurement approaches. Biol. Fert. Soils 53, 547-561.
- 489 https://doi.org/10.1007/s00374-017-1195-z.
- ⁴⁹⁰ Baggs, E.M., 2008. A review of stable isotope techniques for N₂O source partitioning
- ⁴⁹¹ in soils: recent progress, remaining challenges and future considerations. Rapid
- 492 Commun. Mass Spectrom. 22, 1664-1672. https://doi.org/10.1002/Rcm.3456.
- ⁴⁹³ Bai, S., Lian, L., Ma, X., 2011. A Study on the net greenhouse gas emissions under
- ⁴⁹⁴ intensive high-yielding cropland in North China-A case study of winter wheat-
- ⁴⁹⁵ summer maize rotation system in Huantai county. Energy Procedia 5, 785-792.
- 496 https://doi.org/10.1016/j.egypro.2011.03.138
- 497 Bell, M.J., Hinton, N., Cloy, J.M., Topp, C.F.E., Rees, R.M., Cardenas, L., Scott, T.,
- 498 Webster, C., Ashton, R.W., Whitmore, A.P., Williams, J.R., Balshaw, H., Paine,
- 499 F., Goulding, K.W.T., Chadwick, D.R., 2015. Nitrous oxide emissions from
- ⁵⁰⁰ fertilised UK arable soils: Fluxes, emission factors and mitigation. Agric.
- 501 Ecosyst. Environ. 212, 134-147. https://doi.org/10.1016/j.agee.2015.07.003
- ⁵⁰² Cai, G., Fan, X., Yang, Z., Zhu, Z., 1998. Gaseous loss of nitrogen from fertilizers

503	applied to wheat on a calcareous soil in North China Plain. Pedosphere 8, 45-52.
504	Cai, G.X., Chen, D.L., Ding, H., Pacholski, A., Fan, X.H., Zhu, Z.L., 2002. Nitrogen
505	losses from fertilizers applied to maize, wheat and rice in the North China Plain.
506	Nutr. Cycl. Agroecosyst. 63, 187-195. https://doi.org/10.1023/A:1021198724250.
507	Cai, Y., Chang, S.X., Cheng, Y., 2017. Greenhouse gas emissions from excreta
508	patches of grazing animals and their mitigation strategies. Earth Sci. Rev. 171,
509	44-57. https://doi.org/10.1016/j.earscirev.2017.05.013
510	Charles, A., Rochette, P., Whalen, J.K., Angers, D.A., Chantigny, M.H., Bertrand, N.,
511	2017. Global nitrous oxide emission factors from agricultural soils after addition
512	of organic amendments: A meta-analysis. Agric. Ecosyst. Environ. 236, 88-98.
513	https://doi.org/10.1016/j.agee.2016.11.021
514	Chen, B., Liu, E., Tian, Q., Yan, C., Zhang, Y., 2014. Soil nitrogen dynamics and crop
515	residues. A review. Agron. Sustain. Dev. 34, 429-442.
516	https://doi.org/10.1007/s13593-014-0207-8.
517	Chen, H., Li, X., Hu, F., Shi, W., 2013. Soil nitrous oxide emissions following crop
518	residue addition: a meta-analysis. Glob. Change Biol. 19, 2956-2964.
519	https://doi.org/10.1111/gcb.12274.
520	Cui, F., Yan, G., Zhou, Z., Zheng, X., Deng, J., 2012. Annual emissions of nitrous
521	oxide and nitric oxide from a wheat-maize cropping system on a silt loam
522	calcareous soil in the North China Plain. Soil Biol. Biochem. 48, 10-19.
523	https://doi.org/10.1016/j.soilbio.2012.01.007
524	Cui, Z., Chen, X., Zhang, F., 2013. Development of regional nitrogen rate guidelines

- 525 for intensive cropping systems in China. Agron. J. 105, 1411-1416.
- 526 https://doi.org/10.2134/agronj2012.0398.
- ⁵²⁷ Di, H.J., Cameron, K.C., 2008. Sources of nitrous oxide from ¹⁵N-labelled animal
- ⁵²⁸ urine and urea fertiliser with and without a nitrification inhibitor, dicyandiamide
- 529 (DCD). Aust. J. Soil Res. 46, 76-82. https://doi.org/10.1071/sr07093.
- ⁵³⁰ Ding, W., Cai, Y., Cai, Z., Yagi, K., Zheng, X., 2007. Nitrous oxide emissions from an
- ⁵³¹ intensively cultivated maize-wheat rotation soil in the North China Plain. Sci.
- 532 Total Environ. 373, 501-511. https://doi.org/10.1016/j.scitotenv.2006.12.026
- 533 Ding, W., Luo, J., Li, J., Yu, H., Fan, J., Liu, D., 2013. Effect of long-term compost
- ⁵³⁴ and inorganic fertilizer application on background N₂O and fertilizer-induced
- 535 N2O emissions from an intensively cultivated soil. Sci. Total Environ. 465, 115-
- 536 124. https://doi.org/10.1016/j.scitotenv.2012.11.020
- ⁵³⁷ Ding, W.X., Chen, Z.M., Yu, H.Y., Luo, J.F., Yoo, G.Y., Xiang, J., Zhang, H.J., Yuan,
- J.J., 2015. Nitrous oxide emission and nitrogen use efficiency in response to
- 539 nitrophosphate, N-(n-butyl) thiophosphoric triamide and dicyandiamide of a
- ⁵⁴⁰ wheat cultivated soil under sub-humid monsoon conditions. Biogeosciences 12,
- 541 803-815. https://doi.org/10.5194/bg-12-803-2015.
- 542 Esther, O.J., Guo, C., Tian, X., Li, H., Zhou, Y., 2014. The effects of three mineral
- ⁵⁴³ nitrogen sources and zinc on maize and wheat straw decomposition and soil
- ⁵⁴⁴ organic carbon. J. Integr. Agric. 13, 2768-2777. https://doi.org/10.1016/s2095-
- 545 **3119(13)60679-6**.
- 546 Frimpong, K.A., Baggs, E.M., 2010. Do combined applications of crop residues and

- ⁵⁴⁷ inorganic fertilizer lower emission of N₂O from soil? Soil Use Manag. 26, 412-
- ⁵⁴⁸ 424. https://doi.org/10.1111/j.1475-2743.2010.00293.x
- ⁵⁴⁹ Frimpong, K.A., Yawson, D.O., Baggs, E.M., Agyarko, K., 2011. Does incorporation
- ⁵⁵⁰ of cowpea-maize residue mixes influence nitrous oxide emission and mineral
- ⁵⁵¹ nitrogen release in a tropical luvisol? Nutr. Cycl. Agroecosyst. 91, 281-292.
- 552 https://doi.org/10.1007/s10705-011-9461-1.
- 553 Garcia-Ruiz, R., Gomez-Munoz, B., Hatch, D.J., Bol, R., Baggs, E.M., 2012. Soil
- ⁵⁵⁴ mineral N retention and N₂O emissions following combined application of ¹⁵N-
- ⁵⁵⁵ labelled fertiliser and weed residues. Rapid Commun. Mass Spectrom. 26, 2379-
- 556 2385. https://doi.org/10.1002/rcm.6254.
- 557 Gentile, R., Vanlauwe, B., Chivenge, P., Six, J., 2008. Interactive effects from
- ⁵⁵⁸ combining fertilizer and organic residue inputs on nitrogen transformations. Soil
- 559 Biol. Biochem. 40, 2375-2384. https://doi.org/10.1016/j.soilbio.2008.05.018
- ⁵⁶⁰ Ghimire, R., Machado, S., Rhinhart, K., 2015. Long-term crop residue and nitrogen
- ⁵⁶¹ management effects on soil profile carbon and nitrogen in wheat-fallow systems.
- 562 Agron. J. 107, 2230-2240. https://doi.org/10.2134/agronj14.0601.
- ⁵⁶³ Grant, R., Pattey, E., Goddard, T., Kryzanowski, L., Puurveen, H., 2006. Modeling the
- ⁵⁶⁴ effects of fertilizer application rate on nitrous oxide emissions. Soil Sci. Soc. Am.
- 565 J. 70, 235-248. https://doi.org/10.2136/sssaj2005.0104.
- ⁵⁶⁶ Gu, B., Ju, X., Chang, S.X., Ge, Y., Chang, J., 2017. Nitrogen use efficiencies in
- ⁵⁶⁷ Chinese agricultural systems and implications for food security and
- ⁵⁶⁸ environmental protection. Reg. Environ. Change 17, 1217-1227.

https://doi.org/10.1007/s10113-016-1101-5.

570	Han, X., Xu, C., Dungait, J.A.J., Bol, R., Wang, X., Wu, W., Meng, F., 2018. Straw
571	incorporation increases crop yield and soil organic carbon sequestration but
572	varies under different natural conditions and farming practices in China: a system
573	analysis. Biogeosciences 15, 1933-1946. https://doi.org/10.5194/bg-2017-493.
574	Hartmann, T.E., Yue, S., Schulz, R., Chen, X., Zhang, F., Müller, T., 2014. Nitrogen
575	dynamics, apparent mineralization and balance calculations in a maize-wheat
576	double cropping system of the North China Plain. Field Crops Res. 160, 22-30.
577	https://doi.org/10.1016/j.fcr.2014.02.014
578	Hinton, N.J., Cloy, J.M., Bell, M.J., Chadwick, D.R., Topp, C.F.E., Rees, R.M., 2015.
579	Managing fertiliser nitrogen to reduce nitrous oxide emissions and emission
580	intensities from a cultivated Cambisol in Scotland. Geoderma Reg. 4, 55-65.
581	https://doi.org/10.1016/j.geodrs.2014.12.002
582	Hu, X.K., Su, F., Ju, X.T., Gao, B., Oenema, O., Christie, P., Huang, B.X., Jiang, R.F.,
583	Zhang, F.S., 2013. Greenhouse gas emissions from a wheat-maize double
584	cropping system with different nitrogen fertilization regimes. Environ. Pollut.
585	176, 198-207. https://doi.org/10.1016/j.envpol.2013.01.040
586	Huang, T., Gao, B., Christie, P., Ju, X., 2013. Net global warming potential and
587	greenhouse gas intensity in a double-cropping cereal rotation as affected by
588	nitrogen and straw management. Biogeosciences 10, 7897-7911.
589	https://doi.org/10.5194/bg-10-7897-2013.

590 Huang, T., Yang, H., Huang, C., Ju, X., 2017. Effect of fertilizer N rates and straw

- ⁵⁹¹ management on yield-scaled nitrous oxide emissions in a maize-wheat double
- ⁵⁹² cropping system. Field Crops Res. 204, 1-11.
- 593 https://doi.org/10.1016/j.fcr.2017.01.004
- ⁵⁹⁴ Hutchinson, G., Mosier, A., 1981. Improved soil cover method for field measurement
- ⁵⁹⁵ of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 45, 311-316.
- ⁵⁹⁶ https://doi.org/10.2136/sssaj1981.03615995004500020017x.
- ⁵⁹⁷ IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. IPCC/IGES,
 ⁵⁹⁸ Hayama, Japan.
- ⁵⁹⁹ IPCC, 2014. Topic 3: future pathways for adaption, mitigation and sustainable
- development, in: Core Writing Team. Pachauri, R. K., Meyer, L. A. (Eds.),
- 601 Climate change 2014: Synthesis report. Contribution of working groups I, II and
- 602 III to the fifth assessment report of the intergovernmental panel on climate
- 603 change. IPCC, Geneva, pp. 87.
- Ju, X., Liu, X., Zhang, F., Roelcke, M., 2004. Nitrogen fertilization, soil nitrate
- accumulation, and policy recommendations in several agricultural regions of
- 606 China. AMBIO 33, 300-305. https://doi.org/10.1579/0044-7447-33.6.300.
- ⁶⁰⁷ Ju, X.T., Xing, G.X., Chen, X.P., Zhang, S.L., Zhang, L.J., Liu, X.J., Cui, Z.L., Yin,
- B., Christie, P., Zhu, Z.L., Zhang, F.S., 2009. Reducing environmental risk by
- 609 improving N management in intensive Chinese agricultural systems. PloS One
- 610 106, 3041-3046. https://doi.org/10.1073/pnas.0813417106.
- Ju, X., Lu, X., Gao, Z., Chen, X., Su, F., Kogge, M., Romheld, V., Christie, P., Zhang,
- 612 F., 2011. Processes and factors controlling N2O production in an intensively

613	managed low carbon calcareous soil under sub-humid monsoon conditions.
614	Environ. Pollut. 159, 1007-1016. https://doi.org/10.1016/j.envpol.2010.10.040
615	Kim, DG., Giltrap, D., 2017. Determining optimum nitrogen input rate and optimum
616	yield-scaled nitrous oxide emissions: Theory, field observations, usage, and
617	limitations. Agric. Ecosyst. Environ. 247, 371-378.
618	https://doi.org/10.1016/j.agee.2017.07.003
619	Kim, D.G., Hernandez-Ramirez, G., Giltrap, D., 2013. Linear and nonlinear
620	dependency of direct nitrous oxide emissions on fertilizer nitrogen input: A meta-
621	analysis. Agric. Ecosyst. Environ. 168, 53-65. https://doi.org/DOI
622	10.1016/j.agee.2012.02.021.
623	Klumpp, K., Bloor, J.M.G., Ambus, P., Soussana, J.F., 2011. Effects of clover density
624	on N2O emissions and plant-soil N transfers in a fertilised upland pasture. Plant
625	Soil 343, 97-107. https://doi.org/10.1007/s11104-010-0526-8.
626	Kumar, K., Goh, K., 1999. Crop residues and management practices: effects on soil
627	quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron.
628	68, 197-319. https://doi.org/10.1016/S0065-2113(08)60846-9.
629	Kuzyakov, Y., Friedel, J., Stahr, K., 2000. Review of mechanisms and quantification
630	of priming effects. Soil Biol. Biochem. 32, 1485-1498.
631	https://doi.org/10.1016/S0038-0717(00)00084-5.
632	Lampe, C., Dittert, K., Sattelmacher, B., Wachendorf, M., Loges, R., Taube, F., 2006.
633	Sources and rates of nitrous oxide emissions from grazed grassland after
634	application of ¹⁵ N labelled mineral fertilizer and slurry. Soil Biol. Biochem. 38,

- 635 2602-2613. https://doi.org/10.1016/j.soilbio.2006.03.016
- 636 Lehtinen, T., Schlatter, N., Baumgarten, A., Bechini, L., Krüger, J., Grignani, C.,
- ⁶³⁷ Zavattaro, L., Costamagna, C., Spiegel, H., 2014. Effect of crop residue
- 638 incorporation on soil organic carbon and greenhouse gas emissions in European
- agricultural soils. Soil Use Manag. 30, 524-538.
- 640 https://doi.org/10.1111/sum.12151.
- Li, X., Sørensen, P., Olesen, J.E., Petersen, S.O., 2016. Evidence for denitrification as
- main source of N2O emission from residue-amended soil. Soil Biol. Biochem. 92,
- 643 153-160. https://doi.org/10.1016/j.soilbio.2015.10.008
- Li, X.G., Jia, B., Lv, J., Ma, Q., Kuzyakov, Y., Li, F.-m., 2017. Nitrogen fertilization
- decreases the decomposition of soil organic matter and plant residues in planted
- 646 soils. Soil Biol. Biochem. 112, 47-55.
- 647 https://doi.org/10.1016/j.soilbio.2017.04.018
- Liao, Y., Wu, W.L., Meng, F.Q., Smith, P., Lal, R., 2015. Increase in soil organic
- 649 carbon by agricultural intensification in northern China. Biogeosciences 12,
- 650 1403-1413. https://doi.org/10.5194/bg-12-1403-2015.
- Lin, S., Iqbal, J., Hu, R., Shaaban, M., Cai, J., Chen, X., 2013. Nitrous oxide
- emissions from yellow brown soil as affected by incorporation of crop residues
- 653 with different carbon-to-nitrogen ratios: a case study in central China. Arch.
- 654 Environ. Con. Tox. 65, 183-192. https://doi.org/10.1007/s00244-013-9903-7.
- Linquist, B., van Groenigen, K.J., Adviento-Borbe, M.A., Pittelkow, C., van Kessel,
- 656 C., 2012. An agronomic assessment of greenhouse gas emissions from major

657	cereal crops. Glob. Change Biol. 18, 194-209. https://doi.org/10.1111/j.1365-
658	2486.2011.02502.x.
659	Linzmeier, W., Gutser, R., Schmidhalter, U., 2001. Nitrous oxide emission from soil
660	and from a nitrogen-15-labelled fertilizer with the new nitrification inhibitor 3,4-
661	dimethylpyrazole phosphate (DMPP). Biol. Fert. Soils 34, 103-108.
662	https://doi.org/10.1007/s003740100383.
663	Liu, C., Wang, K., Zheng, X., 2012. Responses of N2O and CH4 fluxes to fertilizer
664	nitrogen addition rates in an irrigated wheat-maize cropping system in northern
665	China. Biogeosciences 9, 839-850. https://doi.org/10.5194/bg-9-839-2012.
666	Liu, XJ.A., van Groenigen, K.J., Dijkstra, P., Hungate, B.A., 2017. Increased plant
667	uptake of native soil nitrogen following fertilizer addition – not a priming effect?
668	Appl. Soil Ecol. 114, 105-110. https://doi.org/10.1016/j.apsoil.2017.03.011
669	Loick, N., Dixon, E., Abalos, D., Vallejo, A., Matthews, P., McGeough, K., Watson,
670	C., Baggs, E.M., Cardenas, L.M., 2017. "Hot spots" of N and C impact nitric
671	oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil.
672	Geoderma 305, 336-345. https://doi.org/10.1016/j.geoderma.2017.06.007
673	López-Bellido, L., López-Bellido, R.J., Redondo, R., 2005. Nitrogen efficiency in
674	wheat under rainfed Mediterranean conditions as affected by split nitrogen
675	application. Field Crops Res. 94, 86-97. https://doi.org/10.1016/j.fcr.2004.11.004
676	Luo, J., Wyatt, J., van der Weerden, T.J., Thomas, S.M., de Klein, C.A.M., Li, Y.,
677	Rollo, M., Lindsey, S., Ledgard, S.F., Li, J., Ding, W., Qin, S., Zhang, N., Bolan,
678	N., Kirkham, M.B., Bai, Z., Ma, L., Zhang, X., Wang, H., Liu, H., Rys, G., 2017.

- Potential hotspot areas of nitrous oxide emissions from grazed pastoral dairy farm
- 680 systems. Adv. Agron. 145, 205-268.
- 681 https://doi.org/10.1016/bs.agron.2017.05.006
- 682 Meng, F., Dugait, J.A.J., Xu, X., Bol, R., Zhang, X., Wu, W., 2017. Coupled
- 683 incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil
- organic carbon in Fluvic Cambisol. Geoderma 304, 19-27.
- 685 https://doi.org/10.1016/j.geoderma.2016.09.010
- 686 Ministry of Agriculture-PRC, 2015. Implementation opinions of the Ministry of
- 687 Agriculture on conducting campaign of non-point pollution control.
- 688 http://english.agri.gov.cn/governmentaffairs/gaz/201506/t20150608_25790.htm
- 689 (accessed 12 August 2018).
- ⁶⁹⁰ Ministry of Environmental Protection-PRC, 1999. Regulation of halting straw burning

and implementing comprehensive use of waste straw.

- 692 http://www.zhb.gov.cn/gkml/zj/wj/200910/t20091022_171920.htm (accessed 12
- 693 August 2018).
- ⁶⁹⁴ Nason, G.E., Myrold, D.D., 1991. ¹⁵N in soil research: appropriate application of rate
- estimation procedures. Agric. Ecosyst. Environ. 34, 427-441.
- 696 https://doi.org/10.1016/0167-8809(91)90126-I.
- ⁶⁹⁷ National Coordination Committee on Climate Change (NCCC), 2012. Second
- ⁶⁹⁸ National Communication on Climate Change of the People's Republic of China.
- 699 China Planning Press, Beijing.
- 700 Omonode, R.A., Halvorson, A.D., Gagnon, B., Vyn, T.J., 2017. Achieving lower

- nitrogen balance and higher nitrogen recovery efficiency reduces nitrous oxide
 emissions in North America's maize cropping systems. Front. Plant Sci. 8, 1-16.
 https://doi.org/10.3389/fpls.2017.01080.
- Pearce, R.J., 2016. Legacy effects of long-term manure applications on soil-derived
- nitrous oxide emissions. PhD Thesis. University of Saskatchewan, Saskatoon.
- Rezaei Rashti, M., Wang, W.J., Chen, C.R., Reeves, S.H., Scheer, C., 2017.
- 707 Assessment of N2O emissions from a fertilised vegetable cropping soil under
- ⁷⁰⁸ different plant residue management strategies using ¹⁵N tracing techniques. Sci.
- 709 Total Environ. 598, 479-487. https://doi.org/10.1016/j.scitotenv.2017.04.030
- ⁷¹⁰ Shan, J., Yan, X., 2013. Effects of crop residue returning on nitrous oxide emissions in
- agricultural soils. Atmos. Environ. 71, 170-175.
- 712 https://doi.org/10.1016/j.atmosenv.2013.02.009
- ⁷¹³ Shepherd, A., Yan, X., Nayak, D., Newbold, J., Moran, D., Dhanoa, M.S., Goulding,
- K., Smith, P., Cardenas, L.M., 2015. Disaggregated N₂O emission factors in
- ⁷¹⁵ China based on cropping parameters create a robust approach to the IPCC Tier 2
- 716 methodology. Atmos. Environ. 122, 272-281.
- 717 https://doi.org/10.1016/j.atmosenv.2015.09.054
- ⁷¹⁸ Shi, Y., Wu, W., Meng, F., Zhang, Z., Zheng, L., Wang, D., 2013. Integrated
- 719 management practices significantly affect N2O emissions and wheat-maize
- production at field scale in the North China Plain. Nutr. Cycl. Agroecosyst. 95,
- 721 203-218. https://doi.org/10.1007/s10705-013-9558-9.
- 722 Shi, Y.F., Wu, W.L., Meng, F.Q., Zheng, L., Wang, D.P., Ye, H., Ding, G.W., 2014.

723	Nitrous oxide and methane fluxes during the maize season under optimized
724	management in intensive farming systems of the North China Plain. Pedosphere
725	24, 487-497. https://doi.org/10.1016/s1002-0160(14)60035-7.
726	Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle,
727	S., O'Mara, F., Rice, C., 2007. Agriculture. In: Metz, B., Davidson, O.R., Bosch,
728	P.R., Dave, R., Meyer, L.A. (Eds.), Climate change 2007: Mitigation.
729	Contribution of Working Group III to the Fourth Assessment Report of the
730	Intergovernmental Panel on Climate Change. Cambridge University Press,
731	Cambridge, pp. 497-540.
732	Song,X., Liu,M., Ju,X., Gao,B., Su,F., Chen,X. & Rees,R.M. 2018. Nitrous Oxide
733	Emissions Increase Exponentially When Optimum Nitrogen Fertilizer Rates Are
734	Exceeded in the North China Plain. Environmental Science & Technology, 52,
735	12504-12513.
736	Song, C., Liu, D., Yang, G., Song, Y., Mao, R., 2011. Effect of nitrogen addition on
737	decomposition of Calamagrostis angustifolia litters from freshwater marshes of
738	Northeast China. Ecol. Eng. 37, 1578-1582.
739	https://doi.org/10.1016/j.ecoleng.2011.03.036
740	Tan, Y., Xu, C., Liu, D., Wu, W., Lal, R., Meng, F., 2017. Effects of optimized N
741	fertilization on greenhouse gas emission and crop production in the North China
742	Plain. Field Crops Res. 205, 135-146. https://doi.org/10.1016/j.fcr.2017.01.003
743	Tian, S., Wang, Y., Ning, T., Zhao, H., Wang, B., Li, N., Li, Z., Chi, S., 2013.
744	Greenhouse gas flux and crop productivity after 10 years of reduced and no

- tillage in a wheat-maize cropping system. PloS One 8, e73450.
- 746 https://doi.org/10.1371/journal.pone.0073450.
- Vallejo, A., Meijide, A., Boeckx, P., Arce, A., García-torres, L., Aguado, P.L.,
- ⁷⁴⁸ Sanchez-martin, L., 2014. Nitrous oxide and methane emissions from a surface
- ⁷⁴⁹ drip-irrigated system combined with fertilizer management. Eur. J. Soil Sci. 65,
- 750 386-395. https://doi.org/10.1111/ejss.12140.
- Vigil, M., Kissel, D., 1991. Equations for estimating the amount of nitrogen
- mineralized from crop residues. Soil Sci. Soc. Am. J. 55, 757-761.
- 753 https://doi.org/10.2136/sssaj1991.03615995005500030020x.
- Wan, Y., Ju, X., Ingwersen, J., Schwarz, U., Stange, C.F., Zhang, F., Streck, T., 2009.
- Gross nitrogen transformations and related nitrous oxide emissions in an
- ⁷⁵⁶ intensively used calcareous soil. Soil Sci. Soc. Am. J. 73, 102-112.
- 757 https://doi.org/10.2136/sssaj2007.0419.
- ⁷⁵⁸ Warren Raffa, D., Bogdanski, A., Tittonell, P., 2015. How does crop residue removal
- affect soil organic carbon and yield? A hierarchical analysis of management and
- renvironmental factors. Biomass Bioenergy 81, 345-355.
- 761 https://doi.org/10.1016/j.biombioe.2015.07.022
- 762 Wu, D., Senbayram, M., Well, R., Brüggemann, N., Pfeiffer, B., Loick, N.,
- ⁷⁶³ Stempfhuber, B., Dittert, K., Bol, R., 2017. Nitrification inhibitors mitigate N₂O
- ⁷⁶⁴ emissions more effectively under straw-induced conditions favoring
- denitrification. Soil Biol. Biochem. 104, 197-207.
- 766 https://doi.org/10.1016/j.soilbio.2016.10.022

767	Wu, L., Chen, X., Cui, Z., Zhang, W., Zhang, F., 2014. Establishing a regional
768	nitrogen management approach to mitigate greenhouse gas emission intensity
769	from intensive smallholder maize production. PloS One 9, 22-22.
770	https://doi.org/10.1371/journal.pone.0098481.
771	Xia, L., Wang, S., Yan, X., 2014. Effects of long-term straw incorporation on the net
772	global warming potential and the net economic benefit in a rice-wheat cropping
773	system in China. Agric. Ecosyst. Environ. 197, 118-127.
774	https://doi.org/10.1016/j.agee.2014.08.001
775	Xia, L., Lam, S.K., Chen, D., Wang, J., Tang, Q., Yan, X., 2017. Can knowledge-
776	based N management produce more staple grain with lower greenhouse gas
777	emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol.
778	23, 1917-1925. https://doi.org/10.1111/gcb.13455.
779	Xu, C., Han, X., Bol, R., Smith, P., Wu, W., Meng, F., 2017. Impacts of natural factors
780	and farming practices on greenhouse gas emissions in the North China Plain: A
781	meta-analysis. Ecol. Evol. 7, 6702-6715. https://doi.org/10.1002/ece3.3211.

- 782 Xu, X.K., Zhou, L.K., Van Cleemput, O., Wang, Z.J., 2000. Fate of urea-¹⁵N in a soil-
- ⁷⁸³ wheat system as influenced by urease inhibitor hydroquinone and nitrification
- ⁷⁸⁴ inhibitor dicyandiamide. Plant Soil 220, 261-270.
- 785 https://doi.org/10.1023/A:1004715827085.
- 786 Yan, G., Zheng, X., Cui, F., Yao, Z., Zhou, Z., Deng, J., Xu, Y., 2013. Two-year
- ⁷⁸⁷ simultaneous records of N₂O and NO fluxes from a farmed cropland in the
- ⁷⁸⁸ northern China plain with a reduced nitrogen addition rate by one-third. Agric.

789	Ecosyst. Environ. 178, 39-50. https://doi.org/10.1016/j.agee.2013.06.016
790	Yao, Z., Yan, G., Zheng, X., Wang, R., Liu, C., Butterbach-Bahl, K., 2017. Straw
791	return reduces yield-scaled N2O plus NO emissions from annual winter wheat-
792	based cropping systems in the North China Plain. Sci. Total Environ. 590-591,
793	174-185. https://doi.org/10.1016/j.scitotenv.2017.02.194
794	Ying, H., Ye, Y., Cui, Z., Chen, X., 2017. Managing nitrogen for sustainable wheat
795	production. J. Clean Prod. 162, 1308-1316.
796	https://doi.org/10.1016/j.jclepro.2017.05.196
797	Zhang, A., Cheng, G., Hussain, Q., Zhang, M., Feng, H., Dyck, M., Sun, B., Zhao, Y.,
798	Chen, H., Chen, J., Wang, X., 2017a. Contrasting effects of straw and straw-
799	derived biochar application on net global warming potential in the Loess Plateau
800	of China. Field Crops Res. 205, 45-54. https://doi.org/10.1016/j.fcr.2017.02.006
801	Zhang, L., Zheng, J., Chen, L., Shen, M., Zhang, X., Zhang, M., Bian, X., Zhang, J.,
802	Zhang, W., 2015. Integrative effects of soil tillage and straw management on crop
803	yields and greenhouse gas emissions in a rice-wheat cropping system. Eur. J.
804	Agron. 63, 47-54. https://doi.org/10.1016/j.eja.2014.11.005
805	Zhang, W., Cui, Z., Zhang, F., 2014a. Managing nutrient for both food security and
806	environmental sustainability in China: an experiment for the world. Front. Agric.
807	Sci. Eng. 1, 53-61. https://doi.org/10.15302/j-fase-2014006.
808	Zhang, W., Yu, Y., Li, T., Sun, W., Huang, Y., 2014b. Net greenhouse gas balance in
809	China's Croplands over the last three decades and its mitigation potential.
810	Environ. Sci. Technol. 48, 2589-2597. https://doi.org/10.1021/es404352h.

- Zhang, X., Bol, R., Rahn, C., Xiao, G., Meng, F., Wu, W., 2017b. Agricultural
- 812 sustainable intensification improved nitrogen use efficiency and maintained high
- crop yield during 1980-2014 in Northern China. Sci. Total Environ. 596-597, 61-
- 814 68. https://doi.org/10.1016/j.scitotenv.2017.04.064
- 815 Zhang, X., Meng, F., Li, H., Wang, L., Wu, S., Xiao, G., Wu, W., 2019. Optimized
- 816 fertigation maintains high yield and mitigates N2O and NO emissions in an
- ⁸¹⁷ intensified wheat–maize cropping system. Agric. Water Manage. 211, 26-36.
- 818 https://doi.org/10.1016/j.agwat.2018.09.045
- 819 Zhao, H., Sun, B., Lu, F., Zhang, G., Wang, X., Ouyang, Z., 2015. Straw
- ⁸²⁰ incorporation strategy on cereal crop yield in China. Crop Sci. 55, 1773-1781.
- 821 https://doi.org/10.2135/cropsci2014.09.0599.
- ⁸²² Zhou, Y., Zhang, Y., Tian, D., Mu, Y., 2017. The influence of straw returning on N₂O
- 823 emissions from a maize-wheat field in the North China Plain. Sci. Total Environ.
- 824 584-585, 935-941. https://doi.org/10.1016/j.scitotenv.2017.01.141
- 825

826 Figure captions

827	Figure 1 Dates of field management practices and sampling, and amounts of
828	irrigation and N fertilizer applications during the experimental period.
829	Figure 2 Fluxes of N2O under (a) N0S0, (b) N0S1, (c) N1S0, and (d) N1S1
830	treatments. Error bars represent standard error ($n = 3$). The solid arrows indicate ¹⁵ N
831	fertilizer application, and the dotted arrows indicate irrigation events.
832	Figure 3 Fluxes of CO ₂ for (a) non-N-fertilized and (b) N-fertilized treatments. Error
833	bars represent standard error ($n = 3$). Dotted and solid arrows indicate irrigation
834	events and N fertilizer application, respectively.
835	Figure 4 Percentage of applied N-derived daily N2O emissions after (a) basal
836	fertilization (23 Oct.) and (b) top-dressing (7 Apr.) for the N1S0 and N1S1 treatments.
837	** represents 0.01 significance level. Error bars represent standard error ($n = 3$).
838	Figure 5 Cumulative N2O emissions after (a) basal fertilization (23 Oct.) and (b) top-
839	dressing (7 Apr.), which are divided into fertilizer-derived and soil-derived. Different
840	capital and lowercase letters indicate significant differences of fertilizer-derived and
841	soil-derived N2O emissions, respectively, at $P < 0.05$. Error bars represent standard
842	error ($n = 3$). Dashed lines and braces are used to indicate the additional N ₂ O release
843	from the soil N pool after N fertilization.
844	Figure 6 (a) NO ₃ N and (b) NH ₄ +-N content from different sampling dates. Error
845	bars represent standard error ($n = 3$). Arrows indicate irrigation events and/or N
846	fertilizer application.

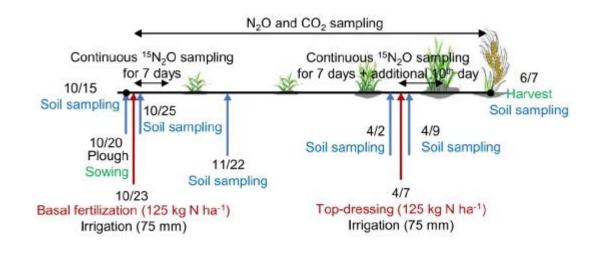
- ⁸⁴⁷ Table 1 Cumulative N₂O and CO₂ emissions and crop yield (dry matter). Data are
- 848 expressed as mean \pm standard error (n = 3). Different letters indicate significant

$2 \pm 51.57 \text{ b}$	$1.46 \pm 0.08 \text{ c}$	700.15 ± 54.11 a
0 ± 32.50 b	2.09 ± 0.16 a	$637.21 \pm 49.20 \text{ a}$
37 ± 150.67 a	1.64 ± 0.12 bc	$770.51 \pm 48.46 \text{ a}$
0 ± 79.89 a	$1.96\pm0.03\ ab$	$817.38 \pm 93.04 \ a$
	$0 \pm 32.50 \text{ b}$ $7 \pm 150.67 \text{ a}$	$0 \pm 32.50 \text{ b}$ $2.09 \pm 0.16 \text{ a}$ $7 \pm 150.67 \text{ a}$ $1.64 \pm 0.12 \text{ bc}$

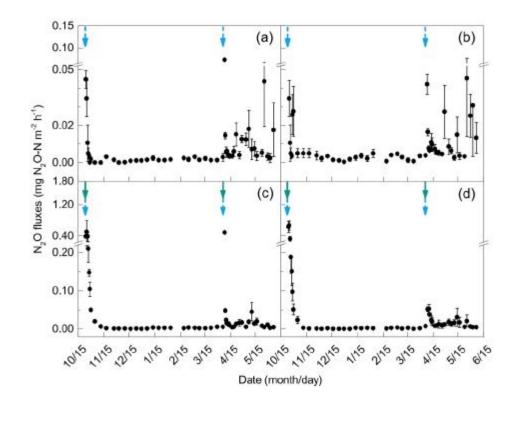
849 differences among the treatments at P < 0.05.

850

- ⁸⁵¹ **Table 2** Proportion of N₂O emissions derived from background, priming effect, and
- ⁸⁵² fertilizer. Data are expressed as mean \pm standard error (n = 3). Different letters


⁸⁵³ indicate significant differences between different treatments at P < 0.05.

Event	Treatment	Background	Priming effect	Fertilizer
Basal	N1S0	$5.74\pm0.36\%$ a	$40.47 \pm 8.33\%$ a	$53.8 \pm 8.18\%$ a
fertilization	N1S1	$8.17 \pm 1.54\%$ a	$50.47 \pm 6.53\%$ a	$41.38\pm800\%~a$
Top-dressing	N1S0	$19.60 \pm 0.89\%$ a	28.61 ± 4.59% a	$51.81 \pm 3.74\%$ a
	N1S1	$27.07\pm2.97\%$ a	$21.02\pm1.54\%~a$	$51.93 \pm 2.35\%$ a


854

855

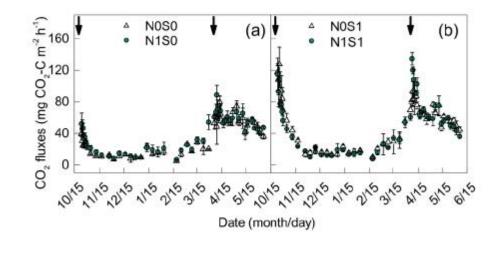

856

Fig. 2

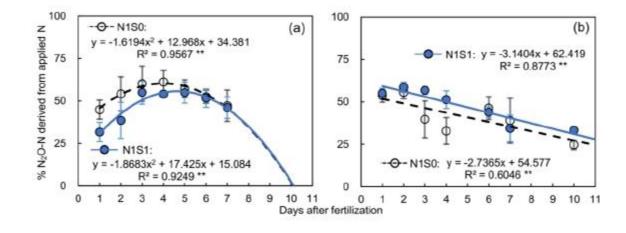
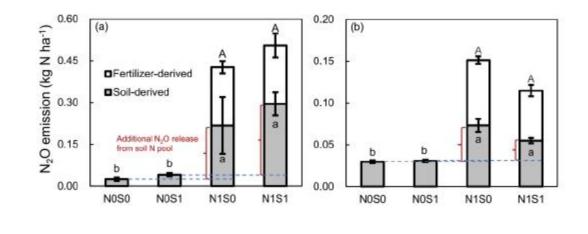


Fig. 3



867 Fig. 4

873	Fig. 6	
874		
875		
876		
877		