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Abstract 
 

Nitrogen (N) fertilization and straw incorporation strongly influence nitrous oxide 

 

(N2O) emissions from agricultural fields. An in-situ micro-plot experiment on 

 

intensively farmed winter wheat (Triticum aestivum L.) was conducted to investigate 

 

the source and rate of N2O emissions from soils following labeled 
15
N fertilization 

 

with and without straw incorporation. Four treatments, i.e., no N fertilizer and no 

 

straw incorporation (N0S0), straw incorporation only (N0S1), N fertilizer only 

 

(N1S0), and N fertilization plus straw incorporation (N1S1), were established in the 

 

experiment. The N2O emissions mainly occurred after N fertilization and lasted for 
 

approximately 1–2 weeks, accounting for 60%–67% of the wheat seasonal N2O 

 

emissions. Within the 6 days after basal fertilization and 2–4 days after top-dressing, 
 

most of the N2O fluxes (>50%) were derived from fertilizer. Thereafter, soil-derived 

 

N2O dominated the total N2O emissions and within 10–20 days after N fertilization, 
 

fertilizer-derived N2O became negligible. Fertilizer N and soil N both accounted for 
 

40%–60% of the seasonal N2O emissions, which may be explained by the high soil N 

 

stock due to long-term high N fertilization in the region. This implies the similar roles 
 

of soil N pool and fertilizer N in N2O generation under intensively farmed soils. The 

 

N fertilization had a significant priming effect on the turnover of soil N, which 

 

contributed 21.0%–28.6% of the seasonal N2O emissions. During the basal 
 

fertilization/first irrigation event, straw incorporation significantly (P < 0.05) 
 

stimulated CO2 fluxes both in N-fertilized and non-N-fertilized plots; however, after 
 

the top-dressing/second irrigation event, the significant increase of CO2 fluxes 
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induced by straw incorporation was only observed in the N-fertilized treatment. Straw 
 

incorporation interacted with N fertilization, and tended to enhance N2O emissions 
 

in the basal fertilization and lower N2O emissions in the top-dressing period. In N- 

 

fertilized plots, the seasonal N2O emissions from straw-incorporated and straw- 

 

removed treatments were similar, indicating that straw incorporation enhanced the N 

 

supply without increasing the N2O emissions. Our study highlights that there are 

 

significant benefits of straw incorporation to soil fertility improvement; however, the 

 

long-term impacts of straw incorporation on greenhouse gas emissions should be 

 

further examined. 
 
 
 
 

Keywords: Nitrous oxide; 15N tracing; Straw incorporation; Nitrogen fertilization; 
 

Intensive farming. 
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1. Introduction 
 
 

Nitrous oxide (N2O) is a major greenhouse gas (Ding et al., 2015; Loick et al., 2017), 
 

which has 265 times greater global warming potential than CO2 over a 100-year time 

 

horizon (IPCC, 2014). Agricultural soils are the dominant emitters of N2O, 
 

contributing 60% (Smith et al., 2007) and 74% (NCCC, 2012) of global and Chinese 

 

N2O emissions, respectively. A better understanding of the pattern and sources of N2O 

 

emissions from agricultural soils is therefore essential to develop novel and practical 
 

strategies to limit climate change (Kim and Giltrap, 2017). 
 

Northern China is a major intensive agricultural region (Tan et al., 2017; Xu et al., 
 

2017), covering about 3 million ha (Ding et al., 2007) and accounting for 67% and 

 

28% of national wheat (Triticum aestivum L.) and maize (Zea mays L.) production 

 

(Zhang et al., 2017b), respectively. High productivity in northern China largely relies 

 

on excessive utilization of synthetic nitrogen (N) fertilizer at rates of >600 kg N ha−1 
 

yr
−1 (Ju et al., 2009); this high level of N input is likely to result in high N2O 

 

emissions (Zhang et al., 2014b; Omonode et al., 2017) as the N supplied exceeds crop 

 

demand (Linquist et al., 2012; Kim et al., 2013; Charles et al., 2017; Song et al. 
 

2018) . Reduction in N2O emissions in northern China could therefore strongly 

 

contribute to the mitigation of anthropogenic N2O emissions at national and global 
 

scales (Tan et al., 2017; Xu et al., 2017). Both fertilizer N and soil N pools are 

 

responsible for N2O emissions (Shepherd et al., 2015), so understanding the 

 

partitioning of these sources is important both to characterize total emissions and also 

 

to allow the precise calculation of emission factors of fertilizer N (IPCC, 2006). 
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Earlier field studies conducted in northern China presumed that the N2O emitted from 
 

fertilizer N applied in the crop season was the predominant source of total N2O 

 

emissions (Liu et al., 2012; Shi et al., 2013; Ying et al., 2017). However, many in-situ 

 

studies using 
15N tracers carried out in Europe (Linzmeier et al., 2001; Garcia-Ruiz et 

 

al., 2012), Oceania (Di and Cameron, 2008), and Africa (Gentile et al., 2008) found 

 

that soil N could account for as much as 60%–99% of the total N2O emissions, 
 

suggesting that the soil N pool contributed a large proportion of the N2O emissions. 
 

Isotopic analysis using 
15
N allows the source and amount of N2O emissions from 

 

fertilizer N to be determined directly (Baggs, 2008; Loick et al., 2017), but most in- 

 

situ 
15
N tracing studies in northern China have not measured the 15N2O flux (Cai et 

 

al., 1998; Xu et al., 2000; Cai et al., 2002; Ju et al., 2009) and thus accurately 

 

distinguishing the N2O derived from fertilizer N and soil N pools has not been 

 

achieved. Wan et al. (2009) used an incubation method to determine the 15N2O 

 

derived from different N sources; however, their laboratory experiment was incapable 

 

of analyzing the effects of natural field conditions (e.g. temperature, precipitation, and 

 

plant growth), which were also essential in affecting 
15
N2O emissions (Klumpp et al., 

 

2011). Thus, it is difficult to draw conclusions from the existing literature that 
 

quantify the contribution of fertilizer N vs soil N to N2O emissions in northern China, 
 

where excessive fertilization has been implemented for more than three decades (Gu 

 

et al., 2017; Huang et al., 2017; Zhang et al., 2017b). 
 

In addition, the high biomass production in northern China has generated vast quantities 

 

of crop straw and residues (Zhou et al., 2017). A combination of synthetic N fertilizer 
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with straw incorporation is strongly recommended as an environmentally friendly 
 

strategy by researchers (Liao et al., 2015; Zhao et al., 2015; Han et al., 2018) and 

 

government agencies (Ministry of Environmental Protection-PRC, 1999; Ministry of 
 

Agriculture-PRC, 2015) to improve soil fertility and minimize negative environmental 
 

impacts. Incorporation of crop straw is generally believed to have positive effects on 

 

soil carbon (C) and N dynamics (Chen et al., 2014; Ghimire et al., 2015; Meng et al., 
 

2017) and on the mitigation of N2O emissions (Frimpong and Baggs, 2010; Badagliacca 

 

et al., 2016). However, results of previous studies on the efficacies of straw 

 

incorporation on N2O emissions were inconsistent, showing either positive (Zhang et 
 

al., 2015; Huang et al., 2017), negative (Xia et al., 2014; Yao et al., 2017), or neutral 
 

effects (Zhang et al., 2017a). In addition, very few studies have considered the effects 
 

of crop straw addition on the source of the generated N2O (Frimpong et al., 2011; 
 

Garcia-Ruiz et al., 2012; Rezaei Rashti et al., 2017; Wu et al., 2017), which would help 

 

to quantify total N2O emissions and inform mitigation actions. 
 

In this study, we used 
15N tracing to evaluate the contribution of the soil N and the 

 

fertilizer N to the total N2O emissions in the intensive farming region of northern 

 

China. Measurements under straw-incorporated and straw-removed treatments were 

 

also performed to investigate the impact of straw incorporation on N2O emissions and 

 

their sources. 
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2. Materials and methods 
 
 

2.1 Study site 

 
 

The experiment was conducted in Huantai county, Shandong province (36°58ʹN, 
 

117°59ʹE), a typical intensively farmed region in northern China (Bai et al., 2011). 
 

The region has a temperate monsoon climate (Shi et al., 2013). Annual mean 

 

precipitation and air temperature in the region is 543 mm and 12.5°C, respectively 

 

(Tan et al., 2017). Prior to the experiment, two crops of winter wheat and summer 
 

maize per year had been farmed for about 30 years (since the 1980s). The experiment 
 

was conducted in the winter wheat season (Oct. 2015 to Jun. 2016; Fig. 1); the 

 

cumulative precipitation, mean air temperature, and mean soil temperature (0–10 cm) 
 

during the experimental period were 210 mm, 9.8°C, and 8.4°C, respectively. The soil 
 

in the experimental site is classified as aquic inceptisol (calcareous, clay loam; Shi et 
 

al., 2013). Soil pH, bulk density, total N content, and soil organic matter content of 
 

top layer (0-20 cm) were 7.70 (water/soil = 2.5/1), 1.52 g cm−3, 1.00 g kg−1, and 17.4 

 

g kg−1, respectively. 
 
 

2.2 Experiment design and setup 

 
 

Four treatments were established in our study: no N fertilizer and no straw 

 

incorporated (N0S0), straw incorporation only (N0S1), N fertilizer only (N1S0), and 

 

N fertilization plus straw incorporation (N1S1). Each treatment was replicated three 

 

times. The resultant 12 microplots (1 × 1 m2) were randomly established in the 
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experimental area with a path (1 m) between microplots. Each microplot was enclosed 
 

with a PVC board, which was inserted into the soil at 1 m depth and the upper edge 

 

was 15 cm above the soil surface. Before winter wheat sowing, phosphorus (P) 
 

fertilizer (calcium superphosphate; 140 kg P2O5 ha−1) and potassium (K) fertilizer 
 

(potassium sulfate; 60 kg K2O ha−1) were broadcasted in all microplots. The topsoil 
 

(0–20 cm) was then plowed with a shovel to mix the P and K fertilizer with soil. In 

 

the straw-incorporated treatments (N0S1 and N1S1), straw from the previous maize 

 

season (0.96 kg m−2; C/N: 76:1) was chopped at 3-5 cm and incorporated thoroughly 

 

with the soil via plowing. Seeding rate for each micro-plot in the study was consistent 
 

with that in local conventional farmland (i.e., 150 kg ha−1; about 330 seeds/micro- 

 

plot). All microplots were surrounded by guard rows. After sowing, all microplots 
 

were irrigated with 75 mm water. In N-fertilized treatments (N1S0 and N1S1), 15N 

 

labeled urea (125 kg N ha−1; 10.21% atom % 
15N, Shanghai Chem-Industry Institute) 

 

was dissolved in the irrigation water and applied uniformly to the microplot as a basal 
 

fertilizer. At the jointing stage, irrigation was also applied with 75 mm of water, and 

 

an additional 125 kg N (15N labeled urea) ha−1 was applied as top-dressing. The 

 

detailed dates of field management events are shown in Fig. 1. 
 
 

2.3 N2O and CO2 flux measurements 
 
 

The closed chamber method was used to simultaneously measure the N2O and CO2 

 

fluxes (Shi et al., 2014; Tan et al., 2017). The static chamber consisted of a PVC base 

 

frame (20 cm width × 30 cm length × 15 cm height) with a water channel and a 
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removable cover (20 cm width × 30 cm length × 20 cm height). The cover box was 
 

equipped with a sampling outlet and a thermometer in the upper plane. The chambers 
 

were established in the between-row area of each microplot after plowing, and the 

 

base was inserted to a depth of 15 cm in the soil. When collecting gas samples, we 

 

filled the water channels with water to keep the chamber airtight. 
 

Gas samples were obtained between 9:00 and 11:00 am. Five gas samples were taken 

 

at 0, 8, 16, 24, and 32 min after chamber covering for flux measurements, and an 

 

additional gas sample was obtained at 60 min closure time for 15N2O analyses. 35 and 

 

15 ml gas samples were collected for flux measurements and 
15
N2O analyses, 

 

respectively, using 35-mL polypropylene syringes fitted with 3-way stopcocks. All the 

 

gas samples were stored in 12 ml evacuated vials (Labco, UK), and the vials for 
 
15 N2O analyses were helium-flushed. It was assumed that N2O confined in the 

 

headspace at the time of chamber closure was equivalent to atmospheric N2O and 

 

contained no excess 15N. 
 

The N2O and CO2 samples were analyzed within the sampling day using an Agilent 
 

7820A gas chromatograph (Agilent Technologies Inc., SCLA, CA, USA), which was 
 

equipped with an electron capture detector (ECD) and a flame ionization detector 
 

(FID). The carrier gas for N2O and CO2 analysis was high-purity N2, and the buffer 
 

gas for ECD was 10% CO2 in pure N2. The flow rates of the carrier gas were 25 and 

 

30 mL min−1 for the ECD and FID, respectively. Temperatures in the column ovens, 
 

ECD, and FID were set at 55°C, 330°C, and 250°C, respectively. The N2O and CO2 

 

fluxes were calculated from the linear or nonlinear changes in gas concentrations 
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determined within the 32-min closure period (Hutchinson and Mosier, 1981; Yan et 
 

al., 2013). 
 

Fluxes of N2O and CO2 were measured daily for a week after fertilization events. The 

 
15 N2O samples were also collected daily during the 7-day continuous sampling period 

 

after fertilization events (samples on the 5th day after top-dressing were missing 

 

because of rain), and additional 15N2O samples were taken on the 10th day after top- 

 

dressing. For the non-fertilization period, only gas fluxes were measured, and the 

 

sampling was performed two times a week (samples were taken only once a week 

 

over winter). 
 

The cumulative N2O emissions were estimated by summing the daily mean fluxes of 
 

measurement and no-measurement days, with daily fluxes of no-measurement days 

 

being estimated as the arithmetic average of adjacent data (Huang et al., 2013; Tian et 
 

al., 2013). 
 
 

2.4 
15
N2O analysis and calculation 

 
 

The 
15
N abundances of N2O samples were analyzed in the Stable Isotope Facility of 

 

the University of California at Davis. Stable isotope ratios of N were measured using 

 

a Thermo Scientific GasBench + Precon gas concentration system interfaced to a 

 

Thermo Scientific Delta V Plus isotope-ratio mass spectrometer (Thermo Electron 

 

Inc., Bremen, Germany). 
 

The collected N2O sample for 15N analysis contained a mixture of atmospheric and 

 

emitted N2O. We used the following equation (Li et al., 2016) to calculate the 15N 
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𝑎𝑡𝑜𝑚%   𝑁𝑒𝑚 = (𝑎𝑡𝑜𝑚%   𝑁𝑚𝑖𝑥 × 𝐶𝑚𝑖𝑥 − 𝑎𝑡𝑜𝑚% 

 

 

212 abundance (atom fraction 
15
N) of emitted N2O (atom% 

15
Nem): 

 

213 15 15 15 𝑁𝑎𝑖𝑟 × 𝐶𝑎𝑖𝑟)/𝐶𝑒𝑚 (1) 
 

214 
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232 

where atom% 
15
Nmix and atom% 

15
Nair are the 15N abundances of headspace samples 

 

and ambient air (averaged 0.369% during the experiment), respectively; and Cmix, Cair, 
 

and Cem are the N2O concentration of headspace samples, ambient air, and emitted 

 

N2O respectively, and Cmix = Cair + Cem. 
 

The proportion of N2O flux derived from fertilizer (% N2O-N derived from applied N) 
 

was calculated according to the following equation (Nason and Myrold, 1991; Lampe 

 

et al., 2006; Vallejo et al., 2014): 
 

% N2O-N derived from applied N = (
15𝑁𝑎𝑝 𝑁2𝑂𝑒𝑚/

15𝑁𝑎𝑝 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟) × 100 (2) 
 

where 
15
Nap N2Oem and 

15
Nape fertilizer are the atom% excess of emitted N2O 

 

(atom% 
15
Nem minus atom% 

15
Nair) and 

15
N labeled urea (10.21% minus atom% 

 
15
Nair), respectively. The product of the total cumulative N2O emissions and 

 

the %N2O-N derived from applied N was calculated as cumulative fertilizer-derived 

 

N2O emissions. The cumulative fertilizer-derived N2O emissions after top-dressing 

 

may be from the top-dressing fertilizer and also the basal fertilizer, because we used 

 
15 N labeled urea in both fertilization events. 
 
 

2.5 Soil and plant sampling 

 
 

In all microplots, soil samples were taken six times (i.e., before sowing, the 2nd day 

 

after basal fertilization, the 30th day after basal fertilization, the 5th day before top- 

 

dressing, the 2nd day after top-dressing, and on harvest). The dates of soil sampling 
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were shown in Fig. 1. On each soil sampling day, two soil cores (2.5 cm diameter) at 
 

0–20 cm depth were taken within each microplot. Samples from the two soil cores 
 

were sieved (2 mm) and mixed well. The boreholes were refilled with PVC columns 
 

to avoid a change in gas exchange and water flow in the soil. The soil ammonium-N 

 

(NH4+-N) and nitrate-N (NO3−-N) were extracted from the fresh soils (20 g) in 100 

 

mL of 1 M KCl solution and analyzed by a colorimetric continuous flow analyzer 
 

(AA3, SEAL Inc., Germany). At harvest, all the grain samples were thoroughly dried 

 

in a 65°C oven for the determination of crop yield (dry matter). 
 
 

2.6 Statistical analysis 
 
 

Differences in cumulative N2O emissions, CO2 emissions, and crop yield were 

 

determined by a t-test for least significant differences at P < 0.05. The values are 

 

expressed as arithmetic mean (n = 3) and standard error of the replications. The 

 

quadratic and linear model was used to estimate relationships between %N2O-N 

 

derived from applied fertilizer N and the day after fertilization. SPSS 22.0 software 

 

(SPSS Inc., Chicago, IL, USA) was used for statistical analyses. 
 
 
 
 

3. Results 
 
 

3.1 N2O and CO2 fluxes 
 
 

The peak N2O emissions were mainly associated with N fertilization and/or irrigation 

 

events. The N1S0 and N1S1 treatments exhibited significantly higher N2O fluxes 
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(peaking at 0.23–0.66 mg N2O-N m−2 h−1) than the N0S0 and N0S1 treatments 
 

(peaking at 0.04–0.07 mg N2O-N m−2 h−1; P < 0.05; Fig. 2). This significant (P < 

 

0.05) increase of N2O fluxes induced by fertilization lasted for about 7 days after 
 

basal fertilization and 10 days after top-dressing. Thereafter, N2O fluxes of all 
 

treatments remained at <0.02 mg N2O-N m−2 h−1, and no statistically significant 
 

differences were found between N-fertilized and non-N-fertilized treatments (P > 

 

0.05). In the basal fertilization period, the peak N2O fluxes tended to be higher in 

 

N1S1 treatments (0.66 mg N2O-N m−2 h−1; Fig. 2d) than that in N1S0 treatments (0.51 

 

mg N2O-N m−2 h−1; Fig. 2c). During the top-dressing period, the opposite trend was 
 

observed, i.e., 0.23 and 0.48 mg N2O-N m−2 h−1 for the N1S1 and N1S0 treatments, 
 

respectively (Fig. 2d, c), although no overall significant difference in N2O fluxes was 
 

found (P > 0.05). 
 

During the basal fertilization/first irrigation event, straw incorporation strongly 

 

stimulated CO2 fluxes both in non-N-fertilized plots and N-fertilized plots: peak 

 

values of CO2 flux from N0S1 and N1S1 (115–127 mg CO2-C m−2 h−1) were about 
 

2.6-fold higher (P < 0.05) than those from N0S0 and N1S0 (39–52 mg CO2-C m−2
 

 

h−1; P < 0.05; Fig. 3a, b). However, in the top-dressing/second irrigation period, this 
 

significant increase of CO2 fluxes after straw-incorporation was only observed in N- 

 

fertilized plots (N1S1; Fig. 3b): the peak CO2 fluxes in the N1S1 treatment (134.6 ± 

 

7.92 mg CO2-C m−2 h−1) was significantly higher than that in the N0S1 treatment 
 

(82.0 ± 7.84 mg CO2-C m−2 h−1; P < 0.05). 
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3.2 Cumulative CO2 and N2O emissions and crop yield 
 
 

In non-N-fertilized plots, the cumulative N2O emissions of N0S1 treatments (368.20 g 

 

N2O-N ha−1) were 45% higher than those of N0S1 treatments (253.82 g N2O-N ha−1); 
 

however, in the N-fertilized plots, the cumulative N2O emissions in the straw- 
 

incorporated and straw-removed treatments were similar (928.40 and 950.87 g N2O-N 

 

ha−1 for N1S1 and N1S0, respectively; Table 1). The N fertilization significantly 

 

increased the cumulative N2O emissions by 152%–274% (928.40–950.87 vs. 253.82– 

 

368.20 g N2O-N ha−1; P < 0.05; Table 1). 
 

Seasonal CO2 emissions increased significantly after straw incorporation, and this was 
 

more apparent in non-N-fertilized treatments, i.e., N0S1 exhibited a 43% increase of 
 

CO2 emission compared with N0S0 (P < 0.05; Table 1). No significant differences in 

 

seasonal CO2 emissions were found between N-fertilized treatments (N1S0 and 

 

N1S1) and their corresponding non-N-fertilized treatments (N0S0 and N0S1; P > 

 

0.05). 
 

The crop yield of N1S0 and N1S1 treatments tended to be higher than that of non-N- 
 

fertilized treatments (N0S0 and N0S1, respectively), but the differences were not 
 

statistically significant (P > 0.05; Table 1). In N-fertilized plots, straw incorporation 

 

slightly increased the wheat yield, whereas in non-N-fertilized plots, the crop yields of 
 

the straw incorporation tended to decline, but no statistical differences were observed 

 

(P > 0.05; Table 1). 
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3.3 N2O derived from the soil and fertilizer N 
 
 

The proportion of N2O fluxes derived from the fertilizer N reached maximum (55%– 

 

61%) on the 4th or 5th day after basal fertilization and then decreased to <50% on the 

 

7th day after basal fertilization (Fig. 4a). This tendency was well described by a 

 

quadratic model (P < 0.05; R2 = 0.96 and 0.92 for N1S0 and N1S1, respectively; Fig. 
 

4a). According to this estimation, the percentage of daily N2O emissions derived from 

 

fertilizer N was close to zero on the 10th day after basal fertilization. During the top- 

 

dressing period (7 to 17 Apr.), the percentage of fertilizer-derived N2O reached 

 

maximum (56%–59%) on the 2nd day after fertilization and then declined afterwards 
 

(Fig. 4b). A linear model estimated that the proportion of fertilizer-derived N2O was 
 

negligible on about the 20th day after top-dressing (P < 0.05; R2 = 0.60 and 0.87 for 
 

N1S0 and N1S1, respectively; Fig. 4b). Straw incorporation had no significant effect 
 

on the ratio of fertilizer-derived N2O fluxes (P > 0.05; Fig. 4). The cumulative 

 

fertilizer-derived N2O emissions after basal fertilization were 209 and 210 g N2O ha−1 
 

for N1S0 and N1S1 treatments (Fig. 5a), respectively, and in the top-dressing period, 
 

the corresponding N2O emissions were 78 and 60 g N2O-N ha−1, respectively (Fig. 
 

5b). 
 

Fertilizer N-derived N2O emissions accounted for 41.4%–53.8% of total emissions in 

 

the basal fertilization period and 51.8%–51.9% in the top-dressing period (Table 2). 
 

The soil-derived N2O emissions from N-fertilized plots (217–295 g N2O-N ha−1 after 
 

basal fertilization and 55–73 g N2O-N ha−1 after top-dressing) were significantly 

 

higher than those from non-N-fertilized plots (24-41 g N2O-N ha−1 after basal 
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fertilization and 30–31 g N2O-N ha−1 after top-dressing; P < 0.05; Fig. 5). This 
 

indicates that the N2O emissions from the soil N pool were significantly promoted by 

 

the N fertilization. Straw incorporation tended to enhance N2O emissions after the 

 

basal-fertilization (Fig. 5a) but decreased after the top-dressing period (Fig. 5b). 
 

However, straw incorporation had no significant effect on the cumulative N2O 

 

emissions contributed by the fertilizer and soil N (P > 0.05; Fig. 5 and Table 2). 
 
 

3.4 Soil N 

 
 

Before the wheat was sown, soil NO3−-N concentrations under the four treatments 
 

were all <10 mg kg−1 (Fig. 6a). Application of N fertilizer significantly (P < 0.05) 
 

increased the NO3−-N concentrations to 45.4–48.2 mg N kg−1 during the basal 
 

fertilization period, and 25.8–32.7 mg N kg−1 during the top-dressing period (Fig. 6a). 
 

On the 2nd day after top-dressing (9 Apr.), N1S1 was observed to have a remarkable 

 

effect of reducing soil NO3−-N concentrations compared with N1S0; however, in other 
 

periods, no apparent differences of soil NO3− (P > 0.05) were detected between N1S1 

 

and N1S0 treatments (Fig. 6a). Soil NH4+-N concentrations always remained at a low 

 

level (<3.5 mg kg−1), and there were no significant differences among treatments (Fig. 
 

6b). 
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4. Discussion 
 
 

4.1 Duration of N2O emissions 
 
 

The N2O emission peaks occurred mainly after N fertilization events and lasted for 
 

approximately 1–2 weeks (Fig. 2), which is consistent with a number of recent studies 
 

(Bell et al., 2015; Hinton et al., 2015; Tan et al., 2017; Yao et al., 2017). This was 
 

mainly attributed to the high soil mineral N content after fertilization events (Ju et al., 
 

2011; Luo et al., 2017; Zhang et al., 2019; Fig. 6). In our study, the N2O emission 

 

peaks occurring during the fertilization period (7 days after basal fertilization and 10 

 

days after top-dressing), i.e., 578–620 g N2O-N ha−1, accounting for 59.6%–67.2% of 
 

the seasonal N2O emissions (Fig. 2). Likewise, Ding et al. (2013) reported that up to 

 

82%–98% of the fertilizer-induced N2O emissions were emitted within the two weeks 
 

following fertilization. That is, although the growth period of winter wheat lasted for 
 

more than 240 days in the northern China, most N2O was emitted in the initial 1–2 

 

weeks following each fertilization event. This finding highlights that N2O mitigation 

 

measures in the wheat season should mainly target the fertilization periods. 
 

The proportion of fertilizer-derived N2O fluxes declined to <50% since the 7th day 

 

after basal fertilization (Fig. 4a) and the 2nd–4th day after top-dressing (Fig. 4b). 
 

Within 10–20 days after fertilization, fertilizer-derived N2O became negligible (Fig. 
 

4a, b). This could be explained by the reduced fertilizer-derived reactive N in soil due 

 

to microbial immobilization (Cai et al., 2017), plant uptake (Omonode et al., 2017), 
 

and losses through NH3 volatilization (Xia et al., 2017) and nitrate leaching (Huang et 
 
 
 

18 



 

 

355 
 

356 

 

357 

 

358 

 

359 

 

360 

 

361 

 

362 

 

363 

 
 

364 

 
 

365 

 

366 

 

367 

 

368 

 

369 

 

370 

 

371 

 

372 

 

373 

 

374 

 

375 

al., 2017), etc. Similar findings were reported by a previous 15N tracing study 
 

conducted in Europe (Linzmeier et al., 2001). These results suggest that the duration 

 

of N2O measurement to assess the fertilizer contribution is shorter than previously 

 

assumed. Intergovernmental Panel on Climate Change (IPCC) guidelines for 
 

estimating N2O emission factors recommend that emission measurements are made 

 

for one year following fertilizer application (IPCC, 2006). Our research suggests that 
 

direct fertilizer emissions may occur over a period of weeks, and it may be 

 

appropriate to reassess the period over which emission factors are calculated for 
 

greenhouse gas inventory purposes. 
 
 

4.2 Sources of N2O emissions 
 
 

Fertilizer-derived N2O accounted for 41.4%–53.8% of the cumulative N2O emissions 
 

in the fertilization period (Table 2), which was higher than regions in Europe (10%– 

 

40%; Linzmeier et al., 2001) and Oceania (<4%; Di and Cameron, 2008). This was 
 

most likely to be related to the significantly higher N application rate in the 

 

intensively farmed region of northern China (250 kg N ha−1 season−1 in our study) 
 

compared with Linzmeier et al. (2001) (160 kg N ha−1 season−1) and Di and Cameron 

 

(2008) (200 kg N ha−1 yr−1). Our finding highlights that there is a great potential for 
 

lowering fertilizer-derived N2O emissions by optimizing the N application rate in the 

 

study region. 
 

Despite the high N application level in northern China, a large proportion (46.2%– 

 

58.6%) of soil-derived seasonal N2O emissions was detected (Fig. 5), indicating a 
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high risk of N2O generation from soil N. Background cumulative N2O emissions 
 

(N2O emissions from non-N-fertilized treatments) in our study were 0.25–0.37 kg 

 

N2O-N ha−1 season−1 (Table 1), comparable to the values (0.22–0.47 kg N2O-N ha−1 
 

season−1) reported in previous site-specific studies (Cui et al., 2012; Hu et al., 2013; 
 

Huang et al., 2013) and a meta-analysis conducted in the same region (Xu et al., 
 

2017). The results of this study showed that the soil-derived N2O emissions in the 

 

fertilized plots were significantly higher than the background N2O emissions (P < 

 

0.05; Fig. 5), which could be attributed to the priming effect of N fertilizer on the soil 
 

N pool (Linzmeier et al., 2001; Lampe et al., 2006; Di and Cameron, 2008). This 
 

priming effect was most likely to have resulted from enhanced native soil N turnover 
 

induced by the increased microbial activity and root exudation (Kuzyakov et al., 
 

2000; Pearce, 2016; Liu et al., 2017). Quantifying the contribution of fertilizer- 

 

derived N to the N2O released by background emissions is a challenging task, but is 
 

important because background emissions are used in the calculation of emission 

 

factors (IPCC, 2006). However, these emission sources are difficult to separate in the 

 

field studies. Our findings indicate that the overall N2O flux needs to be understood in 

 

the context of an interaction between fertilizer and soil N pools. 
 

Farmland in northern China has received continuously high synthetic N applications 

 

(600 kg N ha−1 yr−1) over a long period (> 30 years). Consequently, large amounts of 
 

residual N have accumulated in soil (Cui et al., 2013), which represents a large source 

 

of N2O emissions in the subsequent crop season (Grant et al., 2006). Our findings 
 

show that N2O emissions induced by the priming effect accounted for 43.7%–87.6% 
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of soil-derived N2O emissions (Fig. 5) and 21.0%–50.5% of the total emissions (Table 
 

2), indicating that the risk of N2O loss from the accumulated soil N could be 

 

intensified by N fertilization. In this case, optimum fertilization on the basis of soil 
 

residual N testing could be implemented in the region (Ju et al., 2004; Wu et al., 
 

2014; Zhang et al., 2014a) to increase N use efficiency and reduce the risk of N2O 

 

loss from both fertilizer N and the soil N pools. 
 
 

4.3 Impacts of straw incorporation on N2O emissions 
 
 

In N-fertilized treatments, straw incorporation tended to increase N2O emissions in the 
 

basal fertilization period (Fig. 5a) but the opposite tendency was observed in the top- 

 

dressing period (Fig. 5b). For maize straw with a high C/N ratio (76:1 in our study), 
 

microbes would immobilize the N within soil to decompose the maize straw (Abalos et 
 

al., 2013; Lin et al., 2013; Lehtinen et al., 2014). In the basal fertilization period, N 

 

uptake by plants was negligible, and soil N may be adequate for the decomposition of 
 

straw, as indicated by the similar CO2 fluxes between N0S1 (Fig. 3a) and N1S1 (Fig. 
 

3b) treatments (Esther et al., 2014). Therefore, microbial N immobilization had no 

 

apparent effect on soil mineral N content after basal fertilization (Fig. 6). The increased 

 

N2O emissions under straw-incorporated treatments (Fig. 5a) were probably derived 

 

from straw decomposition (Vigil et al., 1991; Frimpong et al., 2010). However, in the 

 

top-dressing period (at the jointing stage), significant increases of CO2 fluxes after 
 

straw incorporation were only observed in N-fertilized plots (N1S1; Fig. 3b), 
 

suggesting that soil available N was the limiting factor of straw decomposition (López- 

 
 
 

21 



 

 

419 
 

420 

 

421 

 

422 

 

423 

 

424 

 

425 

 

426 

 

427 

 

428 

 

429 

 

430 

 

431 

 

432 

 

433 

 

434 

 

435 

 

436 

 

437 

 

438 

 

439 

 

440 

Bellido et al., 2005; Song et al., 2011; Chen et al., 2014; Li et al., 2017). The 
 

competition for available N between microorganisms and plants in straw-incorporated 

 

plots could have resulted in a decreased NO3−-N concentration (Fig. 6a) and lower N2O 

 

emissions (Fig. 5b). Our results demonstrate that crop straw interacts with N 

 

fertilization to control N2O emissions in intensively farmed soils. 
 

At the seasonal scale, when no N fertilizer was applied, 45% higher N2O emissions 
 

were observed under the straw-incorporated (368 g N2O-N ha−1 season−1) treatments 
 

relative to the treatments without straw (254 g N2O-N ha−1 season−1); however, in N- 

 

fertilized plots, the N2O emissions from straw-incorporated and straw-removed 

 

treatments were similar (928 vs. 951 g N2O-N ha−1 season−1; Table 1). Similar 
 

observations were reported by previous meta-analyses (Shan and Yan, 2013; Xu et al., 
 

2017). In the non-N-fertilized soils where N2O production was relatively constrained 

 

by the limited available N (Kim and Giltrap, 2017), straw input supplied about 60 kg 

 

N ha−1 in our study (N% = 0.69), nearly the same level as soil mineral N quantity (77 

 

kg N ha−1, 0–100 cm; data not shown), which provided an important substrate for N2O 

 

generation (Kumar and Goh, 1999; Chen et al., 2013; Huang et al., 2017). However, 
 

in the N-fertilized plots, N2O emissions induced by straw N addition were probably 

 

overwhelmed by the intensive N fertilization (Yao et al., 2017), although straw- 

 

incorporated treatments recieved about 24% higher total N input than straw-removed 

 

treatments. Our results suggest that straw incorporation could enhance the N supply 

 

without increasing the N2O emissions in intensively managed soils. 
 

It should be mentioned that the soil temperature during the wheat season in northern 
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China (10.8°C) is relatively low, which resulted in a moderate microbial activity and 
 

slow straw decomposition rate (Hartmann et al., 2014; Warren Raffa et al., 2015). 
 

Thus, it is probably not possible to critically examine significant effects of straw 

 

incorporation in just one cropping season. Further in-situ 
15N tracer studies should be 

 

conducted to assess the long-term effect of straw incorporation on the rate and source 

 

of N2O emissions. 
 
 

Conclusions 

 
 

This in-situ 
15
N tracing study provided an insight into the rate and source of N2O 

 

emissions and the effect of straw incorporation on N2O emissions in the intensively 

 

farmed soils of northern China. About 60%–67% of the wheat seasonal N2O 

 

emissions were lost in the one to two weeks following fertilization events. Within 10– 

 

20 days after fertilization, fertilizer-derived N2O became negligible, suggesting that it 
 

may be appropriate to reassess the period over which emission factors are calculated 

 

for greenhouse gas inventory purposes. Because of the long duration of high N input 
 

in this region, fertilizer N and soil N both accounted for about 40%–60% of the 

 

seasonal N2O emissions in the fertilization period, which implies equivalent roles of 
 

the soil N pool and fertilizer N in N2O generation in long-term intensively farmed 

 

soils. During the basal fertilization/first irrigation events, straw incorporation 

 

significantly stimulated CO2 fluxes both in N-fertilized and non-N-fertilized plots; 
 

however, after the top-dressing/second irrigation events, the significant increase of 
 

CO2 fluxes induced by straw incorporation was only observed in the N-fertilized 
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treatment. Application of N fertilizer had a significant priming effect on the soil N 
 

pool, which may increase the risk of N2O loss from N accumulated in the soil. Straw 

 

incorporation interacted with N fertilization, and exhibited a tendency of enhancing 

 

N2O emissions in the basal fertilization and lowering N2O emissions in the top- 

 

dressing period. In N-fertilized plots, the seasonal N2O emissions from straw- 
 

incorporated and straw-removed treatments were similar, indicating straw 

 

incorporation enhanced N supply without increasing the N2O emissions. Our study 

 

highlights the necessity of examining the long-term impacts of N fertilization and 

 

straw incorporation on greenhouse gas emissions. 
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Figure captions 
 
 

Figure 1 Dates of field management practices and sampling, and amounts of 
 

irrigation and N fertilizer applications during the experimental period. 
 

Figure 2 Fluxes of N2O under (a) N0S0, (b) N0S1, (c) N1S0, and (d) N1S1 

 

treatments. Error bars represent standard error (n = 3). The solid arrows indicate 15N 

 

fertilizer application, and the dotted arrows indicate irrigation events. 
 

Figure 3 Fluxes of CO2 for (a) non-N-fertilized and (b) N-fertilized treatments. Error 
 

bars represent standard error (n = 3). Dotted and solid arrows indicate irrigation 

 

events and N fertilizer application, respectively. 
 

Figure 4 Percentage of applied N-derived daily N2O emissions after (a) basal 
 

fertilization (23 Oct.) and (b) top-dressing (7 Apr.) for the N1S0 and N1S1 treatments. 
 

** represents 0.01 significance level. Error bars represent standard error (n = 3). 
 

Figure 5 Cumulative N2O emissions after (a) basal fertilization (23 Oct.) and (b) top- 
 

dressing (7 Apr.), which are divided into fertilizer-derived and soil-derived. Different 
 

capital and lowercase letters indicate significant differences of fertilizer-derived and 

 

soil-derived N2O emissions, respectively, at P < 0.05. Error bars represent standard 

 

error (n = 3). Dashed lines and braces are used to indicate the additional N2O release 

 

from the soil N pool after N fertilization. 
 

Figure 6 (a) NO3−-N and (b) NH4+-N content from different sampling dates. Error 
 

bars represent standard error (n = 3). Arrows indicate irrigation events and/or N 

 

fertilizer application. 
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Table 1 Cumulative N2O and CO2 emissions and crop yield (dry matter). Data are 
 

expressed as mean ± standard error (n = 3). Different letters indicate significant 
 

differences among the treatments at P < 0.05. 

 
Treatment N2O emission 

(g N2O-N ha-1) 

CO2 emission 

(Mg CO2-C ha-1) 

Yield 

(g m-2) 
 
 
 
 
 
 
 

850 
 

851 

 

852 

 

853 

N0S0      253.82 ± 51.57 b   1.46 ± 0.08 c      700.15 ± 54.11 a 

N0S1      368.20 ± 32.50 b   2.09 ± 0.16 a      637.21 ± 49.20 a 

N1S0      950.87 ± 150.67 a  1.64 ± 0.12 bc     770.51 ± 48.46 a 

N1S1      928.40 ± 79.89 a   1.96 ± 0.03 ab     817.38 ± 93.04 a 
 
 
 

Table 2 Proportion of N2O emissions derived from background, priming effect, and 

 

fertilizer. Data are expressed as mean ± standard error (n = 3). Different letters 
 

indicate significant differences between different treatments at P < 0.05. 
 
Event          Treatment  Background      Priming effect     Fertilizer 

 
Basal 

fertilization 

N1S0      5.74 ± 0.36% a   40.47 ± 8.33% a   53.8 ± 8.18% a 

N1S1      8.17 ± 1.54% a   50.47 ± 6.53% a   41.38 ± 800% a 
 

Top-dressing N1S0 19.60 ± 0.89% a 28.61 ± 4.59% a 51.81 ± 3.74% a 

N1S1 27.07 ± 2.97% a 21.02 ± 1.54% a 51.93 ± 2.35% a 

 
854 
 

855 

 
856 

857 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
42 



 

 

858 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
859 

860 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
43 



 

 

861 Fig. 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
862 

863 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
44 



 

 

864 Fig. 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
865 

866 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
45 



 

 

867 Fig. 4 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
868 
869 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

46 



 

 

870 Fig. 5 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
871 
872 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

47 



 

 

873 

874 

875 

876 
 
877 

Fig. 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
48 


