45,879 research outputs found

    Observation of sub-Poisson photon statistics in the cavity-QED microlaser

    Full text link
    We have measured the second-order correlation function of the cavity-QED microlaser output and observed a transition from photon bunching to antibunching with increasing average number of intracavity atoms. The observed correlation times and the transition from super- to sub-Poisson photon statistics can be well described by gain-loss feedback or enhanced/reduced restoring action against fluctuations in photon number in the context of a quantum microlaser theory and a photon rate equation picture. However, the theory predicts a degree of antibunching several times larger than that observed, which may indicate the inadequacy of its treatment of atomic velocity distributions.Comment: 4 pages, 4 figure

    Constraining the Skyrme effective interactions and the neutron skin thickness of nuclei using isospin diffusion data from heavy ion collisions

    Get PDF
    Recent analysis of the isospin diffusion data from heavy-ion collisions based on an isospin- and momentum-dependent transport model with in-medium nucleon-nucleon cross sections has led to the extraction of a value of L=88±25L=88\pm 25 MeV for the slope of the nuclear symmetry energy at saturation density. This imposes stringent constraints on both the parameters in the Skyrme effective interactions and the neutron skin thickness of heavy nuclei. Among the 21 sets of Skyrme interactions commonly used in nuclear structure studies, the 4 sets SIV, SV, Gσ_\sigma, and Rσ_\sigma are found to give LL values that are consistent with the extracted one. Further study on the correlations between the thickness of the neutron skin in finite nuclei and the nuclear matter symmetry energy in the Skyrme Hartree-Fock approach leads to predicted thickness of the neutron skin of 0.22±0.040.22\pm 0.04 fm for 208^{208}Pb, 0.29±0.040.29\pm 0.04 fm for 132^{132}Sn, and 0.22±0.040.22\pm 0.04 fm for 124^{124}Sn.Comment: 10 pages, 4 figures, 1 Table, Talk given at 1) International Conference on Nuclear Structure Physics, Shanghai, 12-17 June, 2006; 2) 11th China National Nuclear Structure Physics Conference, Changchun, Jilin, 13-18 July, 200

    Deep Reinforcement Learning for Quantum Gate Control

    Full text link
    How to implement multi-qubit gates efficiently with high precision is essential for realizing universal fault tolerant computing. For a physical system with some external controllable parameters, it is a great challenge to control the time dependence of these parameters to achieve a target multi-qubit gate efficiently and precisely. Here we construct a dueling double deep Q-learning neural network (DDDQN) to find out the optimized time dependence of controllable parameters to implement two typical quantum gates: a single-qubit Hadamard gate and a two-qubit CNOT gate. Compared with traditional optimal control methods, this deep reinforcement learning method can realize efficient and precise gate control without requiring any gradient information during the learning process. This work attempts to pave the way to investigate more quantum control problems with deep reinforcement learning techniques.Comment: 7 pages, 6 figure

    Sumoylation silences the plasma membrane leak K+ channel K2P1.

    Get PDF
    Reversible, covalent modification with small ubiquitin-related modifier proteins (SUMOs) is known to mediate nuclear import/export and activity of transcription factors. Here, the SUMO pathway is shown to operate at the plasma membrane to control ion channel function. SUMO-conjugating enzyme is seen to be resident in plasma membrane, to assemble with K2P1, and to modify K2P1 lysine 274. K2P1 had not previously shown function despite mRNA expression in heart, brain, and kidney and sequence features like other two-P loop K+ leak (K2P) pores that control activity of excitable cells. Removal of the peptide adduct by SUMO protease reveals K2P1 to be a K+-selective, pH-sensitive, openly rectifying channel regulated by reversible peptide linkage

    Structure And Properties of Nanoparticles Formed under Conditions of Wire Electrical Explosion

    Get PDF
    Structure and properties of nanoparticles formed under conditions of wire electrical explosion were studied. It was shown that the state of WEE power particles can be characterized as a metastable state. It leads to an increased stability of nanopowders at normal temperatures and an increased reactivity during heating, which is revealed in the form of threshold phenomena.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    The future design direction of smart clothing development

    Get PDF
    Literature indicates that Smart Clothing applications, the next generation of clothing and electronic products, have been struggling to enter the mass market because the consumers’ latent needs have not been recognised. Moreover, the design direction of Smart Clothes remains unclear and unfocused. Nevertheless, a clear design direction is necessary for all product development. Therefore, this research aims to identify the design directions of the emerging Smart Clothes industry by conducting a questionnaire survey and focus groups with its major design contributors. The results reveal that the current strategy of embedding a wide range of electronic functions in a garment is not suitable. This is primarily because it does not match the users’ requirements, purchasing criteria and lifestyle. The results highlight the respondents’ preference for personal healthcare and sportswear applications that suit their lifestyle, are aesthetically attractive, and provide a practical function

    Strong decays of N(1535)N^{*}(1535) in an extended chiral quark model

    Full text link
    The strong decays of the N(1535)N^{*}(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqqˉqqqq\bar{q} components in addition to the qqqqqq component. The results show that these five-quark components in N(1535)N^{*}(1535) contribute significantly to the N(1535)NπN^{*}(1535)\to N\pi and N(1535)NηN^{*}(1535)\to N\eta decays. The contributions to the NηN\eta decay come from both the lowest energy and the next-to-lowest energy five-quarks components, while the contributions to the NπN\pi decay come from only the latter one. Taking these contributions into account, the description for the strong decays of N(1535)N^{*}(1535) is improved, especially, for the puzzling large ratio of the decays to NηN\eta and NπN\pi.Comment: 6 pages, 1 figur
    corecore