11,130 research outputs found
Quantification of Macroscopic Quantum Superpositions within Phase Space
Based on phase-space structures of quantum states, we propose a novel measure
to quantify macroscopic quantum superpositions. Our measure simultaneously
quantifies two different kinds of essential information for a given quantum
state in a harmonious manner: the degree of quantum coherence and the effective
size of the physical system that involves the superposition. It enjoys
remarkably good analytical and algebraic properties. It turns out to be the
most general and inclusive measure ever proposed that it can be applied to any
types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
Interspecific competition underlying mutualistic networks
The architecture of bipartite networks linking two classes of constituents is
affected by the interactions within each class. For the bipartite networks
representing the mutualistic relationship between pollinating animals and
plants, it has been known that their degree distributions are broad but often
deviate from power-law form, more significantly for plants than animals. Here
we consider a model for the evolution of the mutualistic networks and find that
their topology is strongly dependent on the asymmetry and non-linearity of the
preferential selection of mutualistic partners. Real-world mutualistic networks
analyzed in the framework of the model show that a new animal species
determines its partners not only by their attractiveness but also as a result
of the competition with pre-existing animals, which leads to the
stretched-exponential degree distributions of plant species.Comment: 5 pages, 3 figures, accepted version in PR
Effects of pressure on the ferromagnetic state of the CDW compound SmNiC2
We report the pressure response of charge-density-wave (CDW) and
ferromagnetic (FM) phases of the rare-earth intermetallic SmNiC2 up to 5.5 GPa.
The CDW transition temperature (T_{CDW}), which is reflected as a sharp
inflection in the electrical resistivity, is almost independent of pressure up
to 2.18 GPa but is strongly enhanced at higher pressures, increasing from 155.7
K at 2.2 GPa to 279.3 K at 5.5 GPa. Commensurate with the sharp increase in
T_{CDW}, the first-order FM phase transition, which decreases with applied
pressure, bifurcates into the upper (T_{M1}) and lower (T_c) phase transitions
and the lower transition changes its nature to second order above 2.18 GPa.
Enhancement both in the residual resistivity and the Fermi-liquid T^2
coefficient A near 3.8 GPa suggests abundant magnetic quantum fluctuations that
arise from the possible presence of a FM quantum critical point.Comment: 5 pages, 5 figure
Efficiency of Energy Transduction in a Molecular Chemical Engine
A simple model of the two-state ratchet type is proposed for molecular
chemical engines that convert chemical free energy into mechanical work and
vice versa. The engine works by catalyzing a chemical reaction and turning a
rotor. Analytical expressions are obtained for the dependences of rotation and
reaction rates on the concentrations of reactant and product molecules, from
which the performance of the engine is analyzed. In particular, the efficiency
of energy transduction is discussed in some detail.Comment: 4 pages, 4 fugures; title modified, figures 2 and 3 modified, content
changed (pages 1 and 4, mainly), references adde
Microstructure, Mechanical Property and Biocompatibility of Porous Ti-Nb-Zr Alloys Fabricated by Rapid Sintering using Space Holder
Space holder method can easily control Young’s modulus due to control the pore size, distribution and shape. In this study, porous Ti-Nb-Zr biomaterial which is not included poison elements was successfully fabricated by powder metallurgy using space holder of NH4HCO3 and foaming agent of TiH2. The consolidation of powder was conducted by spark plasma sintering process (SPS) at 850 °C under 30MPa conditions. The effect of space holder contents on pore size and distribution of Ti-Nb-Zr alloys was observed by optical microscope (OM) and scanning electron microscope (SEM). As a result of microstructure observation, a lot of pore was uniformly distributed in the sintered Ti-Nb-Zr alloys. Cell cultivation experiments were conducted using cell cultivation experimental. The porous Ti-Nb-Zr alloys were fabricated successfully with 30% pore ratio and 50-60GPa of Young’s modulus. Biocompatibility of porous Ti-Nb-Zr alloys is similar to Ti-6Al-4V alloy
Detectability of dissipative motion in quantum vacuum via superradiance
We propose an experiment for generating and detecting vacuum-induced
dissipative motion. A high frequency mechanical resonator driven in resonance
is expected to dissipate energy in quantum vacuum via photon emission. The
photons are stored in a high quality electromagnetic cavity and detected
through their interaction with ultracold alkali-metal atoms prepared in an
inverted population of hyperfine states. Superradiant amplification of the
generated photons results in a detectable radio-frequency signal temporally
distinguishable from the expected background.Comment: 4 pages, 2 figure
Charge states and magnetic ordering in LaMnO3/SrTiO3 superlattices
We investigated the magnetic and optical properties of
[(LaMnO3)n/(SrTiO3)8]20 (n = 1, 2, and 8) superlattices grown by pulsed laser
deposition. We found a weak ferromagnetic and semiconducting state developed in
all superlattices. An analysis of the optical conductivity showed that the
LaMnO3 layers in the superlattices were slightly doped. The amount of doping
was almost identical regardless of the LaMnO3 layer thickness up to eight unit
cells, suggesting that the effect is not limited to the interface. On the other
hand, the magnetic ordering became less stable as the LaMnO3 layer thickness
decreased, probably due to a dimensional effect.Comment: 17 pages including 4 figures, accepted for publication in Phys. Rev.
A review of High Performance Computing foundations for scientists
The increase of existing computational capabilities has made simulation
emerge as a third discipline of Science, lying midway between experimental and
purely theoretical branches [1, 2]. Simulation enables the evaluation of
quantities which otherwise would not be accessible, helps to improve
experiments and provides new insights on systems which are analysed [3-6].
Knowing the fundamentals of computation can be very useful for scientists, for
it can help them to improve the performance of their theoretical models and
simulations. This review includes some technical essentials that can be useful
to this end, and it is devised as a complement for researchers whose education
is focused on scientific issues and not on technological respects. In this
document we attempt to discuss the fundamentals of High Performance Computing
(HPC) [7] in a way which is easy to understand without much previous
background. We sketch the way standard computers and supercomputers work, as
well as discuss distributed computing and discuss essential aspects to take
into account when running scientific calculations in computers.Comment: 33 page
- …