21,090 research outputs found
DC-Prophet: Predicting Catastrophic Machine Failures in DataCenters
When will a server fail catastrophically in an industrial datacenter? Is it
possible to forecast these failures so preventive actions can be taken to
increase the reliability of a datacenter? To answer these questions, we have
studied what are probably the largest, publicly available datacenter traces,
containing more than 104 million events from 12,500 machines. Among these
samples, we observe and categorize three types of machine failures, all of
which are catastrophic and may lead to information loss, or even worse,
reliability degradation of a datacenter. We further propose a two-stage
framework-DC-Prophet-based on One-Class Support Vector Machine and Random
Forest. DC-Prophet extracts surprising patterns and accurately predicts the
next failure of a machine. Experimental results show that DC-Prophet achieves
an AUC of 0.93 in predicting the next machine failure, and a F3-score of 0.88
(out of 1). On average, DC-Prophet outperforms other classical machine learning
methods by 39.45% in F3-score.Comment: 13 pages, 5 figures, accepted by 2017 ECML PKD
Population bound effects on bosonic correlations in non-inertial frames
We analyse the effect of bounding the occupation number of bosonic field
modes on the correlations among all the different spatial-temporal regions in a
setting in which we have a space-time with a horizon along with an inertial
observer. We show that the entanglement between A (inertial observer) and R
(uniformly accelerated observer) depends on the bound N, contrary to the
fermionic case. Whether or not decoherence increases with N depends on the
value of the acceleration a. Concerning the bipartition A-antiR (Alice with an
observer in Rindler's region IV), we show that no entanglement is created
whatever the value of N and a. Furthermore, AR entanglement is very quickly
lost for finite N and for infinite N. We will study in detail the mutual
information conservation law found for bosons and fermions. By means of the
boundary effects associated to N finiteness, we will show that for bosons this
law stems from classical correlations while for fermions it has a quantum
origin. Finally, we will present the strong N dependence of the entanglement in
R-antiR bipartition and compare the fermionic cases with their finite N bosonic
analogs. We will also show the anti-intuitive dependence of this entanglement
on statistics since more entanglement is created for bosons than for their
fermion counterparts.Comment: revtex 4, 12 pages, 10 figures. Added Journal ref
The Electronic and Superconducting Properties of Oxygen-Ordered MgB2 compounds of the form Mg2B3Ox
Possible candidates for the Mg2B3Ox nanostructures observed in bulk of
polycrystalline MgB2 (Ref.1) have been studied using a combination of
Z-contrast imaging, electron energy loss spectroscopy (EELS) and
first-principles calculations. The electronic structures, phonon modes, and
electron phonon coupling parameters are calculated for two oxygen-ordered MgB2
compounds of composition Mg2B3O and Mg2B3O2, and compared with those of MgB2.
We find that the density of states for both Mg2B3Ox structures show very good
agreement with EELS, indicating that they are excellent candidates to explain
the observed coherent oxygen precipitates. Incorporation of oxygen reduces the
transition temperature and gives calculated TC values of 18.3 K and 1.6 K for
Mg2B3O and Mg2B3O2, respectively.Comment: Submitted to PR
Spectral Measures of Bipartivity in Complex Networks
We introduce a quantitative measure of network bipartivity as a proportion of
even to total number of closed walks in the network. Spectral graph theory is
used to quantify how close to bipartite a network is and the extent to which
individual nodes and edges contribute to the global network bipartivity. It is
shown that the bipartivity characterizes the network structure and can be
related to the efficiency of semantic or communication networks, trophic
interactions in food webs, construction principles in metabolic networks, or
communities in social networks.Comment: 16 pages, 1 figure, 1 tabl
Thermodynamics of Quantum Jump Trajectories
We apply the large-deviation method to study trajectories in dissipative
quantum systems. We show that in the long time limit the statistics of quantum
jumps can be understood from thermodynamic arguments by exploiting the analogy
between large-deviation and free-energy functions. This approach is
particularly useful for uncovering properties of rare dissipative trajectories.
We also prove, via an explicit quantum mapping, that rare trajectories of one
system can be realized as typical trajectories of an alternative system.Comment: 5 pages, 3 figure
Quantum trajectory phase transitions in the micromaser
We study the dynamics of the single atom maser, or micromaser, by means of
the recently introduced method of thermodynamics of quantum jump trajectories.
We find that the dynamics of the micromaser displays multiple space-time phase
transitions, i.e., phase transitions in ensembles of quantum jump trajectories.
This rich dynamical phase structure becomes apparent when trajectories are
classified by dynamical observables that quantify dynamical activity, such as
the number of atoms that have changed state while traversing the cavity. The
space-time transitions can be either first-order or continuous, and are
controlled not just by standard parameters of the micromaser but also by
non-equilibrium "counting" fields. We discuss how the dynamical phase behavior
relates to the better known stationary state properties of the micromaser.Comment: 7 pages, 5 figure
- …