39,737 research outputs found

    Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis

    Full text link
    Brain functional connectivity (FC) extracted from resting-state fMRI (RS-fMRI) has become a popular approach for disease diagnosis, where discriminating subjects with mild cognitive impairment (MCI) from normal controls (NC) is still one of the most challenging problems. Dynamic functional connectivity (dFC), consisting of time-varying spatiotemporal dynamics, may characterize "chronnectome" diagnostic information for improving MCI classification. However, most of the current dFC studies are based on detecting discrete major brain status via spatial clustering, which ignores rich spatiotemporal dynamics contained in such chronnectome. We propose Deep Chronnectome Learning for exhaustively mining the comprehensive information, especially the hidden higher-level features, i.e., the dFC time series that may add critical diagnostic power for MCI classification. To this end, we devise a new Fully-connected Bidirectional Long Short-Term Memory Network (Full-BiLSTM) to effectively learn the periodic brain status changes using both past and future information for each brief time segment and then fuse them to form the final output. We have applied our method to a rigorously built large-scale multi-site database (i.e., with 164 data from NCs and 330 from MCIs, which can be further augmented by 25 folds). Our method outperforms other state-of-the-art approaches with an accuracy of 73.6% under solid cross-validations. We also made extensive comparisons among multiple variants of LSTM models. The results suggest high feasibility of our method with promising value also for other brain disorder diagnoses.Comment: The paper has been accepted by MICCAI201

    Four conjectures in Nonlinear Analysis

    Full text link
    In this chapter, I formulate four challenging conjectures in Nonlinear Analysis. More precisely: a conjecture on the Monge-Amp\`ere equation; a conjecture on an eigenvalue problem; a conjecture on a non-local problem; a conjecture on disconnectedness versus infinitely many solutions.Comment: arXiv admin note: text overlap with arXiv:1504.01010, arXiv:1409.5919, arXiv:1612.0819

    Relativistic Photon Mediated Shocks

    Full text link
    A system of equations governing the structure of a steady, relativistic radiation dominated shock is derived, starting from the general form of the transfer equation obeyed by the photon distribution function. Closure is obtained by truncating the system of moment equations at some order. The anisotropy of the photon distribution function inside the shock is shown to increase with increasing shock velocity, approaching nearly perfect beaming at upstream Lorentz factors Γ>>1\Gamma_{-}>>1. Solutions of the shock equations are presented for some range of upstream conditions. These solutions are shown to converge as the truncation order is increased.Comment: 5 pages, a shorter version will appear in PR

    {CoSSL}: {C}o-Learning of Representation and Classifier for Imbalanced Semi-Supervised Learning

    Get PDF
    In this paper, we propose a novel co-learning framework (CoSSL) with decoupled representation learning and classifier learning for imbalanced SSL. To handle the data imbalance, we devise Tail-class Feature Enhancement (TFE) for classifier learning. Furthermore, the current evaluation protocol for imbalanced SSL focuses only on balanced test sets, which has limited practicality in real-world scenarios. Therefore, we further conduct a comprehensive evaluation under various shifted test distributions. In experiments, we show that our approach outperforms other methods over a large range of shifted distributions, achieving state-of-the-art performance on benchmark datasets ranging from CIFAR-10, CIFAR-100, ImageNet, to Food-101. Our code will be made publicly available

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Initial Hypersurface Formulation: Hamilton-Jacobi Theory for Strongly Coupled Gravitational Systems

    Get PDF
    Strongly coupled gravitational systems describe Einstein gravity and matter in the limit that Newton's constant G is assumed to be very large. The nonlinear evolution of these systems may be solved analytically in the classical and semiclassical limits by employing a Green function analysis. Using functional methods in a Hamilton-Jacobi setting, one may compute the generating functional (`the phase of the wavefunctional') which satisfies both the energy constraint and the momentum constraint. Previous results are extended to encompass the imposition of an arbitrary initial hypersurface. A Lagrange multiplier in the generating functional restricts the initial fields, and also allows one to formulate the energy constraint on the initial hypersurface. Classical evolution follows as a result of minimizing the generating functional with respect to the initial fields. Examples are given describing Einstein gravity interacting with either a dust field and/or a scalar field. Green functions are explicitly determined for (1) gravity, dust, a scalar field and a cosmological constant and (2) gravity and a scalar field interacting with an exponential potential. This formalism is useful in solving problems of cosmology and of gravitational collapse.Comment: 30 pages Latex (IOP) file with 2 IOP style files, to be published in Classical and Quantum Gravity (1998

    The Nullity of Bicyclic Signed Graphs

    Full text link
    Let \Gamma be a signed graph and let A(\Gamma) be the adjacency matrix of \Gamma. The nullity of \Gamma is the multiplicity of eigenvalue zero in the spectrum of A(\Gamma). In this paper we characterize the signed graphs of order n with nullity n-2 or n-3, and introduce a graph transformation which preserves the nullity. As an application we determine the unbalanced bicyclic signed graphs of order n with nullity n-3 or n-4, and signed bicyclic signed graphs (including simple bicyclic graphs) of order n with nullity n-5
    corecore