13,306 research outputs found

    The impact of motor symptoms on self-reported anxiety in Parkinson's disease

    Get PDF
    OBJECTIVE: Anxiety is commonly endorsed in Parkinson's disease (PD) and significantly affects quality of life. The Beck Anxiety Inventory (BAI) is often used but contains items that overlap with common PD motor symptoms (e.g., “hands trembling”). Because of these overlapping items, we hypothesized that PD motor symptoms would significantly affect BAI scores. METHODS: One hundred non-demented individuals with PD and 74 healthy control participants completed the BAI. PD motor symptoms were assessed by the Unified Parkinson's Disease Rating Scale (UPDRS). Factor analysis of the BAI assessed for a PD motor factor, and further analyses assessed how this factor affected BAI scores. RESULTS: BAI scores were significantly higher for PD than NC. A five-item PD motor factor correlated with UPDRS observer-rated motor severity and mediated the PD-control difference on BAI total scores. An interaction occurred, whereby removal of the PD motor factor resulted in a significant reduction in BAI scores for PD relative to NC. The correlation between the BAI and UPDRS significantly declined when controlling for the PD motor factor. CONCLUSIONS: The results indicate that commonly endorsed BAI items may reflect motor symptoms such as tremor instead of, or in addition to, genuine mood symptoms. These findings highlight the importance of considering motor symptoms in the assessment of anxiety in PD and point to the need for selecting anxiety measures that are less subject to contamination by the motor effects of movement disorders.Published versio

    Control System for the LEDA 6.7-MeV Proton Beam Halo Experiment

    Get PDF
    Measurement of high-power proton beam-halo formation is the ongoing scientific experiment for the Low Energy Demonstration Accelerator (LEDA) facility. To attain this measurement goal, a 52-magnet beam line containing several types of beam diagnostic instrumentation is being installed. The Experimental Physics and Industrial Control System (EPICS) and commercial software applications are presently being integrated to provide a real-time, synchronous data acquisition and control system. This system is comprised of magnet control, vacuum control, motor control, data acquisition, and data analysis. Unique requirements led to the development and integration of customized software and hardware. EPICS real-time databases, Interactive Data Language (IDL) programs, LabVIEW Virtual Instruments (VI), and State Notation Language (SNL) sequences are hosted on VXI, PC, and UNIX-based platforms which interact using the EPICS Channel Access (CA) communication protocol. Acquisition and control hardware technology ranges from DSP-based diagnostic instrumentation to the PLC-controlled vacuum system. This paper describes the control system hardware and software design, and implementation.Comment: LINAC2000 Conference, 4 pg

    Phase transition in a super superspin glass

    Full text link
    We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with e.g. a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin-glass phase transition at a relatively high temperature, TgT_g \sim 140 K.Comment: 4 pages, 3 figure

    Anomalous metamagnetic-like transition in a FeRh/Fe3_3Pt interface occurring at T120 K in the field-cooled-cooling curves for low magnetic fields

    Full text link
    We report on the magnetic properties of a special configuration of a FeRh thin film. An anomalous behavior on the magnetisation vs. temperature was observed when low magnetic fields are applied in the plane of a thin layer of FeRh deposited on ordered Fe3_3Pt. The anomalous effect resembles a metamagnetic transition and occur only in the field-cooled-cooling magnetisation curve at temperatures near 120 K in samples without any heat treatment.Comment: 7 pages, 5 figures. arXiv admin note: text overlap with arXiv:1008.195

    su(1,1) Algebraic approach of the Dirac equation with Coulomb-type scalar and vector potentials in D + 1 dimensions

    Full text link
    We study the Dirac equation with Coulomb-type vector and scalar potentials in D + 1 dimensions from an su(1, 1) algebraic approach. The generators of this algebra are constructed by using the Schr\"odinger factorization. The theory of unitary representations for the su(1, 1) Lie algebra allows us to obtain the energy spectrum and the supersymmetric ground state. For the cases where there exists either scalar or vector potential our results are reduced to those obtained by analytical techniques

    Efectos Agrobiológicos de Coberturas Verdes en el Cultivo de la Pitahaya (Hylocereus undatus Britton & Rose) en Nicaragua

    Get PDF
    El experimento fue realizado en Masaya - Tipitapa durante dos a˜nos, con la finalidad de determinar el efecto de diferentes coberturas verdes sobre la disponibilidad de materia orgánica, la biomasa, macronutrientes (N,P,K) en el suelo, la incidencia de pestes agrícolas, el crecimiento y rendimiento de la pitahaya, y estimar el equivalente del uso de la tierra. Los tratamientos incluyeron las coberturas verdes: Mucuna pruriens, Cajanus cajan, Canavalia ensiformis, Vigna unguiculata, Dolichos lablab y el manejo tradicional (sin cobertura), y el análisis del comportamiento de cuatro clones (Orejona, Lisa, Cebra y San Ignacio). Los tratamientos con M. pruriens, C. cajan y C. ensiformis produjeron mas biomasa y aumentaron los contenidos de materia orgánica y NPK en el suelo. En ambos ciclos el clon m´as productivo y m´as resistente a plagas y enfermedades fue el Orejona con 2942 y 2547 kg ha−1.S e obtuvieron incrementos en el número de frutos por hectárea y en el rendimiento al asociar pitahaya con D. lablab, C. cajan, M. pruriens y V. unguiculata. El uso equivalente de la tierra fue mayor en coberturas verdes que en el manejo tradicional

    Multilinear Wavelets: A Statistical Shape Space for Human Faces

    Full text link
    We present a statistical model for 33D human faces in varying expression, which decomposes the surface of the face using a wavelet transform, and learns many localized, decorrelated multilinear models on the resulting coefficients. Using this model we are able to reconstruct faces from noisy and occluded 33D face scans, and facial motion sequences. Accurate reconstruction of face shape is important for applications such as tele-presence and gaming. The localized and multi-scale nature of our model allows for recovery of fine-scale detail while retaining robustness to severe noise and occlusion, and is computationally efficient and scalable. We validate these properties experimentally on challenging data in the form of static scans and motion sequences. We show that in comparison to a global multilinear model, our model better preserves fine detail and is computationally faster, while in comparison to a localized PCA model, our model better handles variation in expression, is faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
    corecore