517 research outputs found

    Systematics of 2+ states in semi-magic nuclei

    Full text link
    We propose a simple systematics of low lying 2+ energy levels and electromagnetic transitions in semi-magic isotopic chains Z=28,50,82 and isotonic chains N=28,50,82,126. To this purpose we use a two-level pairing plus quadrupole Hamiltonian, within the spherical Quasiparticle Random Phase Approximation (QRPA). We derive a simple relation connecting the 2+ energy with the pairing gap and quadrupole-quadupole (QQ) interaction strength. It turns out that the systematics of energy levels and B(E2) values predicted by this simple model is fulfilled with a reasonable accuracy by all available experimental data. Both systematics suggest that not only active nucleons but also those filling closed shells play an important role

    High-Pressure Infiltration−Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores

    Get PDF
    Pressure-driven permeation of water in a poorly wettable material results in a conversion of mechanical work into surface free energy representing a new form of energy storage, or absorption. When water is replaced by a concentrated electrolyte solution, the storage capacity of a nanoporous medium becomes comparable to high-end supercapacitors. The addition of salt can also reduce the hysteresis of the infiltration/expulsion cycle. Our molecular simulations provide a theoretical perspective into the mechanisms involved in the process, and underlying structures and interactions in compressed nanoconfined solutions. Specifically, we consider aqueous NaCl in planar confinements of widths of 1.0 nm and 1.64 nm and pressures of up to 3 kbar. Open ensemble Monte Carlo simulations utilizing fractional exchanges of molecules for efficient additions/removal of ions have been utilized in conjunction with pressure-dependent chemical potentials to model bulk phases under pressure. Confinements open to these pressurized bulk, aqueous electrolyte phases show reversibility at narrow pore sizes, consistent with experiment, as well as strong hysteresis at both pore size. The addition of salt results in significant increases in the solid/liquid interfacial tension in narrower pores and associated infiltration and expulsion pressures. These changes are consistent with strong desalination effects at the lower pore size observed irrespective of external pressure and initial concentration

    Molecular Polarizability in Open Ensemble Simulations of Aqueous Nanoconfinements under Electric Field

    Get PDF
    Molecular polarization at aqueous interfaces involves fast degrees of freedom that are often averaged-out in atomistic-modeling approaches. The resulting effective interactions depend on a specific environment, making explicit account of molecular polarizability particularly important in solutions with pronounced anisotropic perturbations, including solid/liquid interfaces and external fields. Our work concerns polarizability effects in nanoscale confinements under electric field, open to an unperturbed bulk environment. We model aqueous molecules and ions in hydrophobic pores using the Gaussian-charge-on-spring BK3-AH representation. This involves nontrivial methodology devel- opments in expanded ensemble Monte Carlo simulations for open systems with long-ranged multibody interactions and necessitates further improvements for efficient modeling of polarizable ions. Structural differences between fixed-charge and polarizable models were captured in molecular dynamics simulations for a set of closed systems. Our open ensemble results with the BK3 model in neat-aqueous systems capture the ∼10% reduction of molecular dipoles within the surface layer near the hydrophobic pore walls in analogy to reported quantum mechanical calculations at water/vapor interfaces. The polarizability affects the interfacial dielectric behavior and weakens the electric-field dependence of water absorption at pragmatically relevant porosities. We observe moderate changes in thermodynamic properties and atom and charged-site spatial distributions; the Gaussian distribution of mobile charges on water and ions in the polarizable model shifts the density amplitudes and blurs the charge-layering effects associated with increased ion absorption. The use of polarizable force field indicates an enhanced response of interfacial ion distributions to applied electric field, a feature potentially important for in silico modeling of electric double layer capacitors

    Glycolipidomics of human cerebellum in development and aging by ion mobility tandem mass spectrometry

    Get PDF
    In this study ion mobility separation (IMS) mass spectrometry (MS) was for the first time introduced in human cerebellum ganglioside research. The work was focused on a comprehensive mapping and structural characterization of human cerebellar gangliosides and determination of the specific changes induced in their expression by brain development and aging. We have carried out a comparative IMS MS mapping of the native ganglioside mixtures extracted from fetal cerebellum in the second trimester of pregnancy vs. near-term fetus vs. aged cerebellum, followed by IMS CID MS/MS fragmentation analysis

    Radio Loud AGN in the Context of the Eigenvector 1 Parameter Space

    Full text link
    We consider the properties of radio-loud (RL) AGN in the context of the Eigenvector 1 (E1) parameter space. RL sources show a restricted E1 parameter space occupation relative to the radio-quiet (RQ) majority. The Fanaroff-Riley II ``parent population'' of relatively un-boosted RL sources (median radio/optical flux ratio ~490) shows the most restricted occupation. RL sources have different broad line properties (and inferred black hole masses and Eddington ratios). FWHM H_beta for the broad line component in RL sources are at least twice as large as the RQ majority. The average broad FeII emission line strength is also about half that for RQ sources. Our sample suggests that the RL cutoff occurs near R_k=70 or logP(6cm)=32.0 ergs/s/Hz. Sources below this cutoff are RQ although we cannot rule out the existence of a distinct intermediate population. We show that the Doppler boosted core-dominated RL sources (median flux ratio ~1000) lie towards smaller FWHM(H_beta_bc) and stronger FeII in E1 as expected if the lines arise in an accretion disk. Our subsample of superluminal sources, with orientation inferred from the synchrotron self Compton model, reinforce this general E1 trend and allow us to estimate the role of source orientation in driving E1 domain occupation.Comment: 9 pages, 3 figures, accepted for publication in ApJ

    Band structure from random interactions

    Get PDF
    The anharmonic vibrator and rotor regions in nuclei are investigated in the framework of the interacting boson model using an ensemble of random one- and two-body interactions. We find a predominance of L(P)=0(+) ground states, as well as strong evidence for the occurrence of both vibrational and rotational band structures. This remarkable result suggests that such band structures represent a far more general (robust) property of the collective model space than is generally thought.Comment: 5 pages, 4 figures, Phys. Rev. Lett., in pres

    Screening and sequencing of sialylated glycosphingolipids in human glioblastoma by ion mobility mass spectrometry

    Get PDF
    High performance ion mobility separation mass spectrometry (IMS MS) was thoroughly optimized to allow the discovery of glioblastoma multiforme (GBM)-specific structures and the assessment of their roles as tumor markers or possible associated antigens. Ganglioside (GG) separation by IMS according to the charge state, carbohydrate chain length, degree of sialylation and ceramide composition, led to the identification of no less than 160 distinct components [1], which represents 3 folds the number of structures identified before. The detected GGs and asialo-GGs were found characterized by a high heterogeneity in their ceramide and glycan compositions, encompassing up five Neu5Ac residues. The tumor was found dominated in equal and high proportions by GD3 and GT1 forms, with a particular incidence of C24:1 fatty acids in the ceramide

    Possible experimental signature of octupole correlations in the 02+^+_2 states of the actinides

    Full text link
    JÏ€J^{\pi}= 0+^+ states have been investigated in the actinide nucleus 240{}^{240}Pu up to an excitation energy of 3 MeV with a high-resolution (p,t) experiment at EpE_{p}= 24 MeV. To test the recently proposed JÏ€J^{\pi}= 02+^+_2 double-octupole structure, the phenomenological approach of the spdf-interacting boson model has been chosen. In addition, the total 0+^+ strength distribution and the 0+0^+ strength fragmentation have been compared to the model predictions as well as to the previously studied (p,t) reactions in the actinides. The results suggest that the structure of the 02+^+_2 states in the actinides might be more complex than the usually discussed pairing isomers. Instead, the octupole degree of freedom might contribute significantly. The signature of two close-lying 0+^+ states below the 2-quasiparticle energy is presented as a possible manifestation of strong octupole correlations in the structure of the 02+^+_2 states in the actinides.Comment: 6 pages, 5 figures, published in Phys. Rev. C 88, 041303(R) (2013

    Phase Transitions in Finite Nuclei and the Integer Nucleon Number Problem

    Full text link
    The study of spherical-deformed ground--state phase transitions in finite nuclei as a function of N and Z is hindered by the discrete values of the nucleon number. A resolution of the integer nucleon number problem, and evidence relating to phase transitions in finite nuclei, are discussed from the experimental point of view and interpreted within the framework of the interacting boson model.Comment: 8 pages Latex + 8 figs (postscript). In Phys Rev Lett, June 199
    • …
    corecore