61 research outputs found

    Effect of TiO2 Doping on Degradation Rate, Microstructure and Strength of Borate Bioactive Glass Scaffolds

    Get PDF
    A titanium-containing borate glass series based on the system (52-X) B2O3–12CaO–6P2O5–14Na2O–16ZnO-XTiO2 with X varying from 0, 5 and 15 mol% of TiO2 incorporated, identified as BRT0, BRT1 and BRT3, respectively, were used in this study. Scaffolds (pore sizes, 165–230 μm and porosity, 53.51–69.51%) were prepared using a polymer foam replication technique. BRT3 scaffolds exhibited higher compressive strength (7.16 ± 0.22 MPa) when compared to BRT0 (6.02 ± 0.47 MPa) and BRT1 (5.65 ± 0.28 MPa) scaffolds with lower, or no, TiO2 content. The solubility of the scaffolds decreased as the TiO2 content increased up to 15 mol% when samples of each scaffold were immersed in DI water and the pH of all these extracts went up from 7.0 to 8.5 in 30 days. The cumulative ion release from the scaffolds showed significant difference with respect to TiO2 content; addition of 5 mol% TiO2 at the expense of borate (B2O3) decreased the ion release remarkably. Furthermore, it was found that for all three scaffolds, cumulative ion release increased with incubation time. The results indicate that the degradation rates and compressive strengths of borate bioactive glass scaffolds could be controlled by varying the amount of TiO2 incorporated, confirming their potential as scaffolds in TKA and rTKA

    The role of poly(methyl methacrylate) in management of bone loss and infection in revision total knee arthroplasty: A review

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The goals of this paper are: (1) to identify the most common complications, outside of sepsis, arising from the application of PMMA following rTKA, (2) to discuss the current applications and drawbacks of employing PMMA in managing bone loss, (3) to review the role of PMMA in addressing bone infection following complications in rTKA. Papers published between 1970 to 2018 have been considered through searching in Springer, Google Scholar, IEEE Xplore, Engineering village, PubMed and weblinks. This review considers the use of PMMA as both a bone void filler and as a spacer material in two-stage revision. To manage bone loss, PMMA is widely used to fill peripheral bone defects whose depth is less than 5 mm and covers less than 50% of the bone surface. Treatment of bone infections with PMMA is mainly for two-stage rTKA where antibiotic-loaded PMMA is inserted as a spacer. This review also shows that using antibiotic-loaded PMMA might cause complications such as toxicity to surrounding tissue, incomplete antibiotic agent release from the PMMA, roughness and bacterial colonization on the surface of PMMA. Although PMMA is the only commercial bone cement used in rTKA, there are concerns associated with using PMMA following rTKA. More research and clinical studies are needed to address these complications

    Comparative Evaluation of Two Glass Polyalkenoate Cements: An in Vivo Pilot Study using a Sheep Model

    Get PDF
    Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone–cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone

    Validation and analysis of the Polair3D v1.11 chemical transport model over Quebec

    Get PDF
    Air pollution is a major health hazard, and while air quality overall has been improving in industrialized nations, pollution is still a major economic and public health issue, with some species, such as ozone (O3), still exceeding the standards set by governing agencies. Chemical transport models (CTMs) are valuable tools that aid in our understanding of the risks of air pollution both at local and regional scales. In this study, the Polair3D v1.11 CTM of the Polyphemus air quality modeling platform was set up over Quebec, Canada, to assess the model's capability in predicting key air pollutant species over the region, at seasonal temporal scales and at regional spatial scales. The simulation by the model included three nested domains, at horizontal resolutions of 9 km by 9 km and 3 km by 3 km, as well as two 1 km by 1 km domains covering the cities of Montréal and Québec. We find that the model captures the spatial variability and seasonal effects and, to a lesser extent, the hour-by-hour or day-to-day temporal variability for a fixed location. The model at both the 3 km and the 1 km resolution struggled to capture high-frequency temporal variability and showed large variabilities in correlation and bias from site to site. When comparing the biases and correlation at a site-wide scale, the 3 km domain showed slightly higher correlation for carbon monoxide (CO), nitrogen dioxide (NO2), and nitric oxide (NO), while ozone (O3), sulfur dioxide (SO2), and PM2.5 showed slight increases in correlation at the 1 km domain. The performance of the Polair3D model was in line with other models over Canada and comparable to Polair3D's performance over Europe.</p

    International Pediatric ORL Group (IPOG) laryngomalacia consensus recommendations

    Get PDF
    Objective To provide recommendations for the comprehensive management of young infants who present with signs or symptoms concerning for laryngomalacia. Methods Expert opinion by the members of the International Pediatric Otolaryngology Group (IPOG). Results Consensus recommendations include initial care and triage recommendations for health care providers who commonly evaluate young infants with noisy breathing. The consensus statement also provides comprehensive care recommendations for otolaryngologists who manage young infants with laryngomalacia including: evaluation and treatment considerations for commonly debated issues in laryngomalacia, initial work-up of infants presenting with inspiratory stridor, treatment recommendations based on disease severity, management of the infant with feeding difficulties, post-surgical treatment management recommendations, and suggestions for acid suppression therapy. Conclusion Laryngomalacia care consensus recommendations are aimed at improving patient-centered care in infants with laryngomalacia

    Adenovirus Gene Transfer to Amelogenesis Imperfecta Ameloblast-Like Cells

    Get PDF
    To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including “pK7” and/or “RGD” motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber “knob” domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both αvβ3/αvβ5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore