8,793 research outputs found

    The structure, energy, and electronic states of vacancies in Ge nanocrystals

    Full text link
    The atomic structure, energy of formation, and electronic states of vacancies in H-passivated Ge nanocrystals are studied by density functional theory (DFT) methods. The competition between quantum self-purification and the free surface relaxations is investigated. The free surfaces of crystals smaller than 2 nm distort the Jahn-Teller relaxation and enhance the reconstruction bonds. This increases the energy splitting of the quantum states and reduces the energy of formation to as low as 1 eV per defect in the smallest nanocrystals. In crystals larger than 2 nm the observed symmetry of the Jahn-Teller distortion matches the symmetry expected for bulk Ge crystals. Near the nanocrystal's surface the vacancy is found to have an energy of formation no larger than 0.5 to 1.4 eV per defect, but a vacancy more than 0.7 nm inside the surface has an energy of formation that is the same as in bulk Ge. No evidence of the self-purification effect is observed; the dominant effect is the free surface relaxations, which allow for the enhanced reconstruction. From the evidence in this paper, it is predicted that for moderate sized Ge nanocrystals a vacancy inside the crystal will behave bulk-like and not interact strongly with the surface, except when it is within 0.7 nm of the surface.Comment: In Press at Phys. Rev.

    Dependence of quantum correlations of twin beams on pump finesse of optical parametric oscillator

    Full text link
    The dependence of quantum correlation of twin beams on the pump finesse of an optical parametric oscillator is studied with a semi-classical analysis. It is found that the phase-sum correlation of the output signal and idler beams from an optical parametric oscillator operating above threshold depends on the finesse of the pump field when the spurious pump phase noise generated inside the optical cavity and the excess noise of the input pump field are involved in the Langevin equations. The theoretical calculations can explain the previously experimental results, quantitatively.Comment: 27 pages, 8 figure

    Magnetocrystalline anisotropic effect in GdCo1x_{1-x}Fex_xAsO (x=0,0.05x = 0, 0.05)

    Full text link
    From a systematic study of the electrical resistivity ρ(T,H)\rho(T,H), magnetic susceptibility χ(T,H)\chi(T,H), isothermal magnetization M(H)M(H) and the specific heat C(T,H)C(T,H), a temperature-magnetic field (TT-HH) phase diagram has been established for GdCo1x_{1-x}Fex_xAsO (x=0x = 0 and 0.050.05) polycrystalline compounds. GdCoAsO undergoes two long-range magnetic transitions: ferromagnetic (FM) transition of Co 3d3d electrons (TCCoT_\textup{C}^\textup{Co}) and antiferromagnetic (AFM) transition of Gd 4f4f electrons (TNGdT_\textup{N}^\textup{Gd}). For the Fe-doped sample (x=0.05x=0.05), an extra magnetic reorientation transition takes place below TNGdT_\textup{N}^\textup{Gd}, which is likely associated with Co moments. The two magnetic species of Gd and Co are coupled antiferromagnetically to give rise to ferrimagnetic (FIM) behavior in the magnetic susceptibility. Upon decreasing the temperature (T<TCCoT < T_\textup{C}^\textup{Co}), the magnetocrystalline anisotropy breaks up the FM order of Co by aligning the moments with the local easy axes of the various grains, leading to a spin reorientation transition at TRCoT_\textup{R}^\textup{Co}. By applying a magnetic field, TRCoT_\textup{R}^\textup{Co} monotonically decreases to lower temperatures, while the TNGdT_\textup{N}^\textup{Gd} is relatively robust against the external field. On the other hand, the applied magnetic field pulls the magnetization of grains from the local easy direction to the field direction via a first-order reorientation transition, with the transition field (HMH_\textup{M}) increasing upon cooling the temperature.Comment: accepted by physical Review B 6 figures and 7 page

    Acute cholecystitis associated with infection of Enterobacteriaceae from gut microbiota

    Get PDF
    AbstractAcute cholecystitis (AC) is one of the most common surgical diseases. Bacterial infection accounts for 50% to 85% of the disease's onset. Since there is a close relationship between the biliary system and the gut, the aims of this study were to characterize and determine the influence of gut microbiota on AC, to detect the pathogenic microorganism in the biliary system, and to explore the relationship between the gut and bile microbiota of patients with AC. A total of 185 713 high-quality sequence reads were generated from the faecal samples of 15 patients and 13 healthy controls by 16S rRNA gene pyrosequencing. Patients' samples were significantly enriched in Akkermansia, Enterobacter and Escherichia/Shigella group. The healthy controls, however, showed significant enrichment of Clostridiales, Coprococcus, Coprobacillaceae, Paraprevotella, Turicibacter and TM7-3 in their faecal samples. Escherichia coli was the main biliary pathogenic microorganism, among others such as Klebsiella spp., Clostridium perfringens, Citrobacter freundii and Enterobacter cloacae in the bile of the patients. Additionally, the amount of bile endotoxin significantly correlated with the number of Enterobacteriaceae, especially E. coli. Our data indicate that Enterobacteriaceae might play essential role in the pathogenesis and/or progress of AC. This was verified in an in vivo model using a pathogenic E. coli isolated from one of the patients in guinea pigs and observed marked gallbladder inflammation and morphologic changes. This study thus provides insight which could be useful for the prevention, diagnosis and treatment of AC and related diseases by controlling the growth of Enterobacteriaceae to alleviate the infection

    Fetal Familial Cerebral Cavernous Malformation With a Novel Heterozygous KRIT1 Pathogenic Variant

    Get PDF
    OBJECTIVES: To identify fetal familial cerebral cavernous malformation (CCMs) and a novel mutation. METHODS: A 37-year-old pregnant woman (G4P0) presented right-handed numbness since two weeks at 31 weeks of gestation. Evaluation with brain magnetic resonance imaging (MRI) revealed multiple CCMs. As a result, fetal MRI, fetal Whole Exome Sequencing (WES), and maternal Sanger sequencing were performed. RESULTS: The mother's brain MRI demonstrated numerous CCMs involving the brain stem, cerebral hemispheres, and cerebellum. Fetal MRI showed a CCM located in the left frontal lobe in SWI. The neuroimaging characteristics of the mother and the fetus suggested that their CCMs may be familial. Genetic analysis revealed a novel mutation in KRIT1 (c.1A>G, p.0?), also called CCM1, in the mother and the baby. The mother delivered a daughter at 32 weeks of gestation with an Apgar score of 10 by cesarean section. DISCUSSION: This mutation of the initial codon in the KRIT1 gene leads to a phenotype with an early-onset. To our knowledge, this is the first-ever reported case of fetal familial CCM and this novel mutation. Brain MRI has excellent sensitivity and specificity, providing the best option for detecting CCMs, even in utero, primarily when SWI is used

    Magnetic Damping of g-Jitter Driven Flows: 3-D Calculations

    Get PDF
    A 3-D numerical model is developed to represent the oscillating natural convection induced in a cylindrical cavity filled with Ga-doped germanium with and without the presence of an external magnetic field. The model is developed based on the penalty-finite element solution of the equations describing the transport of momentum, heat and solutal element as well as the electromagnetic field distribution in the melt pool. Automatic time step control is applied to help speed up the calculations. Numerical simulations are conducted to study the convection and magnetic damping effects as a function of frequency, directions and amplitudes of g-jitter and also the direction and magnitudes of the applied magnetic fields. The results show that the g-jitter driven flow is time dependent and exhibits a complex recirculating convection pattern in three dimensions and that an applied magnetic field can be employed to suppress this deleterious convective flow and both magnitude and orientation of the applied field are important in magnetic damping of the g-jitter induced convective flows

    Upper critical field and thermally activated flux flow in single crystalline Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2

    Full text link
    The upper critical field μ0Hc2(Tc)\mu_0H_{c2}(T_c) of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2 single crystals has been determined by means of measuring the electrical resistivity in both a pulsed magnetic field (\sim60T) and a DC magnetic field (\sim14T). It is found that Hc2H_{c2} linearly increases with decreasing temperature for H\textbf{H}\parallelcc, reaching μ0Hc2Hc(0K)60\mu_0H_{c2}^{\textbf{H}\parallel c}(0\textrm{K})\simeq60 T. On the other hand, a larger μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) with a strong convex curvature is observed for H\textbf{H}\perpcc (μ0Hc2Hc\mu_0H_{c2}^{\textbf{H}\perp c}(18K)\simeq60T). This compound shows a moderate anisotropy of the upper critical field around TcT_c, but decreases with decreasing temperature. Analysis of the upper critical field based on the Werthamer-Helfand-Hohenberg (WHH) method indicates that μ0Hc2(0K)\mu_0H_{c2}(0\textrm{K}) is orbitally limited for H\textbf{H}\parallelcc, but the effect of spin paramagnetism may play an important role on the pair breaking for H\textbf{H}\perpcc. All these experimental observations remarkably resemble those of the iron pnictide superconductors, suggesting a unified scenario for the iron-based superconductors. Moreover, the superconducting transition is significantly broadened upon applying a magnetic field, indicating strong thermal fluctuation effects in the superconducting state of Tl0.58_{0.58}Rb0.42_{0.42}Fe1.72_{1.72}Se2_2. The derived thermal activation energy for vortex motion is compatible with those of the 1111-type iron pnictides.Comment: 7 pages, 6 figure
    corecore