2,278 research outputs found

    Dark matter: A spin one half fermion field with mass dimension one?

    Full text link
    We report an unexpected theoretical discovery of a spin one half matter field with mass dimension one. It is based on a complete set of eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity it belongs to a non standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate it as a first-principle candidate for dark matter.Comment: 5 pages, RevTex, v2: slightly extended discussion, new refs. and note adde

    Faithful Flatness of Hopf Algebras

    Get PDF

    MiniBooNE and a (CP)^2 = -1 sterile neutrino

    Full text link
    It has been taken as granted that the observation of two independent mass-squared differences necessarily fixes the number of underlying mass eigenstates as three, and that the addition of a sterile neutrino provides an additional mass-squared difference. The purpose of this Letter is to argue that if one considers a sterile neutrino component that belongs to the (CP)^2 = - 1 sector, then both of the stated claims are false. We also outline how the results reported here, when combined with the forthcoming MiniBooNE data and other experiments, can help settle the issue of the CP properties of the sterile neutrino; if such a component does indeed exist.Comment: Mod. Phys. Lett. A (in press, 8 pages

    Nonnegative subtheories and quasiprobability representations of qubits

    Full text link
    Negativity in a quasiprobability representation is typically interpreted as an indication of nonclassical behavior. However, this does not preclude states that are non-negative from exhibiting phenomena typically associated with quantum mechanics - the single qubit stabilizer states have non-negative Wigner functions and yet play a fundamental role in many quantum information tasks. We seek to determine what other sets of quantum states and measurements for a qubit can be non-negative in a quasiprobability representation, and to identify nontrivial unitary groups that permute the states in such a set. These sets of states and measurements are analogous to the single qubit stabilizer states. We show that no quasiprobability representation of a qubit can be non-negative for more than four bases and that the non-negative bases in any quasiprobability representation must satisfy certain symmetry constraints. We provide an exhaustive list of the sets of single qubit bases that are non-negative in some quasiprobability representation and are also permuted by a nontrivial unitary group. This list includes two families of three bases that both include the single qubit stabilizer states as a special case and a family of four bases whose symmetry group is the Pauli group. For higher dimensions, we prove that there can be no more than 2^{d^2} states in non-negative bases of a d-dimensional Hilbert space in any quasiprobability representation. Furthermore, these bases must satisfy certain symmetry constraints, corresponding to requiring the bases to be sufficiently complementary to each other.Comment: 17 pages, 8 figures, comments very welcome; v2 published version. Note that the statement and proof of Theorem III.2 in the published version are incorrect (an erratum has been submitted), and this arXiv version (v2) presents the corrected theorem and proof. The conclusions of the paper are unaffected by this correctio

    From Light Nuclei to Nuclear Matter. The Role of Relativity?

    Get PDF
    The success of non-relativistic quantum dynamics in accounting for the binding energies and spectra of light nuclei with masses up to A=10 raises the question whether the same dynamics applied to infinite nuclear matter agrees with the empirical saturation properties of large nuclei.The simple unambiguous relation between few-nucleon and many-nucleon Hamiltonians is directly related to the Galilean covariance of nonrelativistic dynamics. Relations between the irreducible unitary representations of the Galilei and Poincare groups indicate thatthe ``nonrelativistic'' nuclear Hamiltonians may provide sufficiently accurate approximations to Poincare invariant mass operators. In relativistic nuclear dynamics based on suitable Lagrangeans the intrinsic nucleon parity is an explicit, dynamically relevant, degree of freedom and the emphasis is on properties of nuclear matter. The success of this approach suggests the question how it might account for the spectral properties of light nuclei.Comment: conference proceedings "The 11th International Conference on Recent Progress in Many-Body Theories" to be published by World Scientifi

    Excitations and Quantum Fluctuations in Site Diluted Two-Dimensional Antiferromagnets

    Full text link
    We study the effect of site dilution and quantum fluctuations in an antiferromagnetic spin system on a square lattice within the linear spin-wave approximation. By performing numerical diagonalization in real space and finite-size scaling, we characterize the nature of the low-energy spin excitations for different dilution fractions up to the classical percolation threshold. We find nontrivial signatures of fractonlike excitations at high frequencies. Our simulations also confirm the existence of an upper bound for the amount of quantum fluctuations in the ground state of the system, leading to the persistence of long-range order up to the percolation threshold. This result is in agreement with recent neutron-scattering experimental data and quantum Monte Carlo numerical calculations. We also show that the absence of a quantum critical point below the classical percolation threshold holds for a large class of systems whose Hamiltonians can be mapped onto a system of coupled noninteracting massless bosons.Comment: RevTex 4, 16 pages, 8 EPS figures, typos corrected, data from Ref. 9 added, few minor changes in the text, to appear in Phys. Rev.

    Infinite spin particles

    Full text link
    We show that Wigner's infinite spin particle classically is described by a reparametrization invariant higher order geometrical Lagrangian. The model exhibit unconventional features like tachyonic behaviour and momenta proportional to light-like accelerations. A simple higher order superversion for half-odd integer particles is also derived. Interaction with external vector fields and curved spacetimes are analyzed with negative results except for (anti)de Sitter spacetimes. We quantize the free theories covariantly and show that the resulting wave functions are fields containing arbitrary large spins. Closely related infinite spin particle models are also analyzed.Comment: 43 pages, Late

    The Interference Term in the Wigner Distribution Function and the Aharonov-Bohm Effect

    Full text link
    A phase space representation of the Aharonov-Bohm effect is presented. It shows that the shift of interference fringes is associated to the interference term of the Wigner distribution function of the total wavefunction, whereas the interference pattern is defined by the common projections of the Wigner distribution functions of the interfering beamsComment: 10 pages, 4 figure

    Classification of quantum relativistic orientable objects

    Full text link
    Started from our work "Fields on the Poincare Group and Quantum Description of Orientable Objects" (EPJC,2009), we consider here a classification of orientable relativistic quantum objects in 3+1 dimensions. In such a classification, one uses a maximal set of 10 commuting operators (generators of left and right transformations) in the space of functions on the Poincare group. In addition to usual 6 quantum numbers related to external symmetries (given by left generators), there appear additional quantum numbers related to internal symmetries (given by right generators). We believe that the proposed approach can be useful for description of elementary spinning particles considering as orientable objects. In particular, their classification in the framework of the approach under consideration reproduces the usual classification but is more comprehensive. This allows one to give a group-theoretical interpretation to some facts of the existing phenomenological classification of known spinning particles.Comment: 24 page

    Analysis Tools for Discovering Strong Parity Violation at Hadron Colliders

    Full text link
    Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools for describing the azimuthal dependence of multi-particle distributions, or "azimuthal flow." Analysis uses the representations of the orthogonal group O(2) and dihedral groups DND_{N} necessary to define parity correctly in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single "reaction plane". Many new parity-violating observables exist that have never been measured, while many new parity-conserving observables formerly lumped together are now distinguished. We use the concept of "event shape sorting" to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHICRHIC or RHICSpinRHIC\, Spin, and the LHCLHC.Comment: 18 pages, 2 figures. Final version, accepted for publication in PRD. Updated references. Modified presentation and discussion of previous wor
    corecore