Faithful Flatness of Hopf Algebras

Akira Masuoka*

Department of Mathematics, Nippon Institute of Technology, Miyashiro, Saitama 345, Japan

AND

DAVID WIGNER

Laboratoire de Mathématiques Fondamentales, Université Paris VI, 4 Place Jussieu, 75005 Paris, France

Communicated by Susan Montgomery

Received October 5, 1992

Introduction

We work over a field k. Let $G = \operatorname{Sp} A$ be an affine k-group scheme represented by a commutative Hopf algebra A. Let B be a right coideal (and) subalgebra of A. The affine k-scheme $\operatorname{Sp} B$ with natural right G-action is isomorphic canonically with the dur k-sheaf of left cosets $H \setminus G$ for some closed subgroup scheme H, if and only if A is faithfully flat as a B-module [T3]. Thus the question of faithful flatness of Hopf algebras (including the non-commutative case) comes to our attention.

A commutative Hopf algebra is not necessarily faithfully flat over every right coideal subalgebra. We prove, however, in Section 3 of this paper the following:

THEOREM. A commutative Hopf algebra is a flat module over every right coideal subalgebra.

On the other hand, we give in Section 2 some necessary and sufficient conditions for a non-commutative Hopf algebra to be faithfully flat over a right coideal subalgebra, part of which is found in the following:

*Present address: Department of Mathematics, Shimane University, Matsue City, Shimane 690, Japan.

156

0021-8693/94 \$6.00 Copyright © 1994 by Academic Press, Inc. All rights of reproduction in any form reserved. THEOREM. Let A be a Hopf algebra with bijective antipode, and $B \subseteq A$ a right coideal subalgebra. Then the following are equivalent with each other:

- (a) A is flat as a left B-module and B is a simple object in the category M_R^A ;
 - (b) A is faithfully flat as a left B-module;
 - (c) A is a projective generator as a left B-module.

Note that a Hopf subalgebra is necessarily a right coideal subalgebra. Applying the two theorems, we obtain a simple proof of the following important theorem [T1, 3] due to M. Takeuchi: a commutative Hopf algebra is a faithfully flat module, or more strongly a projective generator, over every Hopf subalgebra.

1. Preliminaries

We work over a fixed base field k. Unadorned \otimes means \otimes_k .

Let A be a bialgebra with coproduct $\Delta: A \to A \otimes A$, counit $\epsilon: A \to k$, and $B \subset A$ a right coideal subalgebra, that is, a subalgebra such that $\Delta(B) \subset B \otimes A$.

We denote by

$$M_R^A$$
 (resp., $_RM^A$)

the category consisting of right (resp., left) B-modules M with a right A-comodule structure $\rho: M \to M \otimes A$ such that

$$\rho(mb) = \sum m_{(0)}b_{(1)} \otimes m_{(1)}b_{(2)}$$

$$(\text{resp.}, \rho(bm) = \sum b_{(1)}m_{(0)} \otimes b_{(2)}m_{(1)})$$

for $m \in M$, $b \in B$. Here we write as usual

$$\Delta(a) = \sum a_{(1)} \otimes a_{(2)} \quad (a \in A),$$

$$\rho(m) = \sum m_{(0)} \otimes m_{(1)} \quad (m \in M).$$

Morphisms in M_B^A or $_BM^A$ are B-linear and A-colinear maps, and these categories are abelian [T3, p. 454]. A sequence in M_B^A or $_BM^A$ is exact, if and only if it is exact viewed in the category of k-vector spaces. Both A and B are contained in M_B^A or in $_BM^A$ with obvious structures. We have a natural identification

$$_{B}\mathsf{M}^{A}=\mathsf{M}_{B^{\mathrm{op}}}^{A^{\mathrm{op}}},$$

where ?op means the opposite algebra.

481/170/1-11

Write $\overline{A} = A/AB^+$, where $B^+ = B \cap \text{Ker } \varepsilon$. This is a quotient left A-module coalgebra of A (that is, a quotient left A-module and quotient coalgebra). For $M \in M_B^A$, write $\overline{M} = M/MB^+$ and denote by $m \mapsto \overline{m}$, $M \to \overline{M}$ the quotient map. (This notation is consistent with \overline{A} .) Then \overline{M} has an induced right \overline{A} -comodule structure. Thus we have a natural functor

$$(1.1) \overline{?}: \mathsf{M}_{\mathcal{B}}^{A} \to \mathsf{M}^{\overline{A}}, M \mapsto \overline{M},$$

where $M^{\overline{A}}$ denotes the category of right \overline{A} -comodules. This is left adjoint to

$$(1.2) ? \square_{\overline{A}}A: \mathsf{M}^{\overline{A}} \to \mathsf{M}_{R}^{A}, V \mapsto V \square_{\overline{A}}A.$$

Here $\Box_{\overline{A}}$ denotes the cotensor product [T2, p. 1526]. The structure of $V \Box_{\overline{A}} A$ in M_B^A comes from that of A. A is called a (faithfully) coflat left \overline{A} -comodule, if ? $\Box_{\overline{A}} A$ is (faithfully) exact. The adjunctions Ξ, Θ determined by $\overline{?}$,? $\Box_{\overline{A}} A$ are given by

(1.3)
$$\Xi_M: M \to \overline{M} \square_{\overline{A}} A, \quad m \mapsto \sum \overline{m_{(0)}} \otimes m_{(1)},$$

(1.4)
$$\Theta_V : \overline{V \square_{\overline{A}} A} \to V, \qquad \overline{\sum v_i \otimes a_i} \mapsto \sum v_i \varepsilon(a_i)$$

for $M \in M_B^A$, $V \in M^{\overline{A}}$. For details, refer to [T3, p. 455].

If A is a Hopf algebra, that is, a bialgebra with antipode, then for each $M \in M_R^A$

$$(1.5) M \otimes_{R} A \simeq \overline{M} \otimes A, m \otimes a \mapsto \sum \overline{m_{(0)}} \otimes m_{(1)} a$$

is an isomorphism [T3, p. 456, line 4]. In particular,

$$(1.6) A \otimes_{B} A \simeq \overline{A} \otimes A, a \otimes a' \mapsto \sum \overline{a_{(1)}} \otimes a_{(2)}a'$$

is an isomorphism.

2. Generalities

- 2.1. THEOREM. Let A be a Hopf algebra with bijective antipode S, and $B \subseteq A$ a right coideal subalgebra. Write $\overline{A} = A/AB^+$. Then the following are equivalent with each other:
 - (a) A is flat as a left B-module and B is a simple object in M_B^A ;
 - (b) A is faithfully flat as a left B-module;
 - (c) A is a projective generator as a left B-module;

- (d) A is faithfully coflat as a left \overline{A} -comodule and $B = \{a \in A | \Sigma \overline{a_{(1)}} \otimes a_{(2)} = \overline{1} \otimes a \text{ in } \overline{A} \otimes A\};$
- (e) The functors $\overline{?}$, $? \square_{\overline{A}} A$ defined in (1.1)–(1.2) are (mutually quasi-inverse) equivalences;
 - (f) The adjunctions Ξ , Θ defined in (1.3)–(1.4) are isomorphisms.

If S is bijective, then A^{op} is a Hopf algebra by [DT, Prop. 7]. Hence by applying the result to A^{op} , one sees that the right versions of (a)–(c) are equivalent with each other.

Proof of (2.1). We prove the theorem as follows:

$$(a) \leftarrow (b) \leftarrow (c)$$

$$\downarrow \qquad \uparrow$$
 $(f) \rightarrow (e) \rightarrow (d)$

- (c) \Rightarrow (b), (f) \Rightarrow (e). These are standard facts.
- (e) \Rightarrow (d). This implication as well as the converse is shown in [S1, Thm. 4.7]. For completeness we give the proof.

Suppose (e). Then $? \square_{\overline{A}} A$ is faithfully exact, which means A is a faithfully coflat left \overline{A} -comodule. On the other hand, the right-hand side of the equation in (d) is identified with $k \square_{\overline{A}} A$. One sees easily $B \subseteq k \square_{\overline{A}} A$. Apply $\overline{?}$; then $k = \overline{B} \subseteq \overline{k \square_{\overline{A}} A}$. Since $\overline{k \square_{\overline{A}} A} = k$ by (e), $\overline{B} = \overline{k \square_{\overline{A}} A}$. Hence the equation in (d) holds true.

(d) \Rightarrow (c). Suppose (d). A is a faithfully coflat left comodule over its quotient coalgebra \overline{A} . Hence it follows by [S1, Prop. 1.3] that

(2.2)
$$\overline{A} \triangleleft A$$
 as left \overline{A} -comodules,

which means that \overline{A} is as a left \overline{A} -comodule a direct summand of A. A comodule over a coalgebra is coflat, if and only if it is injective [T2, Prop. A.2.1]. Hence A is an injective left \overline{A} -comodule, or in other words

(2.3)
$$A \oplus \overline{A}$$
 as left \overline{A} -comodules,

where $\oplus \overline{A}$ denotes a direct sum of some copies of \overline{A} . By [T3, p. 457, line 18], the equation in (d) implies that

(2.4)
$$A \otimes B \to A \square_{\overline{A}} A$$
, $a \otimes b \mapsto \sum a_{(1)} \otimes a_{(2)} b$

is an isomorphism. Denote by S^- the composite-inverse of S, and compose (2.4) with the isomorphism

$$A \otimes S^{-}(B) \rightarrow A \otimes B$$
, $a \otimes S^{-}(b) \mapsto \sum aS^{-}(b_{(2)}) \otimes b_{(1)}$,

which has inverse $\sum ab_{(2)} \otimes S^{-}(b_{(1)}) \leftarrow a \otimes b$. Then one has the isomorphism

$$(2.5) \quad A \otimes S^{-}(B) \simeq A \square_{\overline{A}} A, \quad a \otimes S^{-}(b) \mapsto \sum a_{(1)} S^{-}(b) \otimes a_{(2)}.$$

Since $S^-(b) \otimes 1 \in A \square_{\overline{A}} A$ for $b \in B$, $S^-(b)$ is invariant under the right \overline{A} -coaction, so that the right $S^-(B)$ -action and the right \overline{A} -coaction on A commute with each other. Hence, by applying $A \square_{\overline{A}}$? to (2.2) and (2.3), we have

(2.6)
$$A \bigoplus A \square_{\overline{A}} A$$
, $A \square_{\overline{A}} A \bigoplus \bigoplus A$ as right $S^{-}(B)$ -modules.

It follows from (2.5) and (2.6) that A is a projective generator as a right $S^{-}(B)$ -module. By twisting by S, (c) follows.

(b) \Rightarrow (a). It is proved in [M, Lemma 2.2] that, if ? $\otimes_B A$ is a faithful functor, B is simple in M_B^A (that is, there exist no non-zero proper right ideals of B which are simultaneously right coideals of A). Hence (b) implies (a).

For (a) \Rightarrow (f), we prove the following:

2.7. Lemma. Let A be a Hopf algebra, and $B \subseteq A$ a right coideal subalgebra. Suppose that B is a simple object in ${}_{B}M^{A}$. Then, for every $0 \neq M \in {}_{B}M^{A}$, B can be embedded as a left B-module into a direct sum $\oplus M$ of some copies of M.

Proof. Regard $M \otimes A$ as an object in ${}_{B}M^{A}$ with the structures

$$b(m \otimes a) = bm \otimes a, \qquad m \otimes a \mapsto \sum m_{(0)} \otimes a_{(1)} \otimes m_{(1)}a_{(2)},$$

where $b \in B$, $m \otimes a \in M \otimes A$. For any $0 \neq m \in M$,

$$b\mapsto \sum bm_{(0)}\otimes S(m_{(1)}), \qquad B\to M\otimes A$$

is a morphism in ${}_{B}\mathsf{M}^{A}$, where S is the antipode of A. This is an injection by simplicity of B. Thus the lemma is established.

Proof of (2.1) (continued). (a) \Rightarrow (f). Suppose (a). Since A is left B-flat, it follows by the proof of [T3, Thm. 1] that $\Theta_V \colon \overline{V \square_{\overline{A}} A} \to V$ $(V \in \mathbb{M}^{\overline{A}})$ is an isomorphism. In fact, the composite

$$(V \square_{\overline{A}} A) \otimes_{B} A \cong \overline{(V \square_{\overline{A}} A)} \otimes A \xrightarrow{\Theta_{V} \otimes A} V \otimes A$$

is identified with the isomorphism [T3, p. 456, line 8]

(2.8)
$$(V \square_{\overline{A}} A) \otimes_{B} A \simeq V \square_{\overline{A}} (A \otimes_{B} A)$$
$$\simeq V \square_{\overline{A}} (\overline{A} \otimes A) \simeq V \otimes A,$$

where the first isomorphism in (2.8) is given since A is left B-flat, and the second is induced from (1.6). Hence Θ_V is an isomorphism. Let $0 \neq M \in M_B^A$. By applying (2.7) to A^{op} , it follows that there is a right B-linear injection $B \hookrightarrow \emptyset$. Applying the exact functor $P \otimes_B A$, one has $A \hookrightarrow \emptyset$ ($M \otimes_B A$). This implies that the functor P is faithfully exact, since one has the isomorphism $M \otimes_B A \simeq \overline{M} \otimes A$ given in (1.5). To show that $\overline{\Xi}_M$ is an isomorphism, apply \overline{P} . Then one has a right \overline{A} -colinear map

$$\overline{\Xi_M}\!\!:\,\overline{M}\to\overline{\overline{M}\;\square_{\,\overline{A}}\;A},\qquad \overline{m}\mapsto\overline{\Sigma\,\overline{m_{(0)}}\otimes m_{(1)}},$$

which satisfies $\Theta_{\overline{M}} \circ \overline{\Xi_M} = \text{id. Since } \Theta_{\overline{M}}$ is an isomorphism as shown above, $\overline{\Xi_M}$ is, too. Therefore Ξ_M is an isomorphism, since $\overline{?}$ is faithfully exact. Thus we have completed the proof of (2.1).

- 2.9. COROLLARY. Let A be a Hopf algebra, and $B \subseteq A$ a Hopf subalgebra. Suppose that the antipodes of A and B are both bijective. Then the following are equivalent with each other:
 - (a) A is flat as a left B-module;
 - (b) A is faithfully flat as a left B-module;
 - (c) A is a projective generator as a left B-module;
- (d) Every non-zero object in ${}_{B}\mathsf{M}^{A}$ is a projective generator as a left B-module;
 - (a°)-(d°) The right versions of (a)-(d).

Proof. (a) \Leftrightarrow (b) \Leftrightarrow (c). Since B is a Hopf algebra, B is simple in M_B^B by [Sw, Thm. 4.1.1], hence so in M_B^A . Therefore (a) \Leftrightarrow (b) \Leftrightarrow (c) follows by (2.1).

- (d) \Rightarrow (c). Trivial.
- (c) \Rightarrow (d). Suppose that A is left B-projective, and let $0 \neq M \in {}_{B}M^{A}$. Then it follows by applying [D, Thm. 4] to Hopf algebras $B^{\mathrm{op}} \subset A^{\mathrm{op}}$ that M is left B-projective. Since B is simple in ${}_{B}M^{A}$, it follows from the proof of (2.7) that there is an injection $B \hookrightarrow M \otimes A$ in ${}_{B}M^{A}$. This has a left B-linear retraction, since the cokernel is left B-projective. Thus M is a left B-generator.
 - $(a^{\circ}) \Leftrightarrow (b^{\circ}) \Leftrightarrow (c^{\circ}) \Leftrightarrow (d^{\circ})$. Apply $(a) \Leftrightarrow (b) \Leftrightarrow (c) \Leftrightarrow (d)$ to $B^{op} \subset A^{op}$.
 - (a) \Leftrightarrow (a°). Twist by S or S⁻.

There is some overlap in (2.9) with the result [S2, Cor. 1.8] due to H.-J. Schneider.

3. COMMUTATIVE HOPF ALGEBRAS

Throughout this section, we let A be a commutative Hopf algebra with antipode S, and $B \subset A$ a right coideal subalgebra. Note that S is bijective, in fact $S \circ S = \text{id } [Sw, Prop. 4.0.1].$

3.1. Lemma. Let $M \in M_B^A$ such that M is finitely generated as a B-module. Then the localization M_{B^+} by $B^+ = B \cap \text{Ker } \varepsilon$ is free as a B_{B^+} -module.

Proof. Set $r = \dim \overline{M}$, the k-dimension of $\overline{M} = M/MB^+$. Then by the isomorphism $M \otimes_B A \simeq \overline{M} \otimes A$ given in (1.5), $M \otimes_B A$ is a free A-module of rank r. Take a B-linear map

$$f \colon \oplus^r B \to M$$

which is an isomorphism modulo B^+ . Here $\oplus^r B$ denotes the direct sum of r copies of B. Then

$$f_{R^+} \colon \oplus' B_{R^+} \to M_{R^+}$$

is a B_B --linear surjection by the Nakayama lemma, since this is an isomorphism modulo the unique maximal ideal $B^+B_{B^+}$. Apply ? $\otimes_{B_{B^+}}A_{B^+}$ to f_{B^+} . Then one has an A_{B^+} -linear surjection

$$(3.2) \qquad \qquad \oplus' A_{B^+} \to (M \otimes_B A)_{B^+} \simeq \oplus' A_{B^+}.$$

One sees this is an isomorphism by counting ranks. (See [B2, Corollaire, p. 111].) Since

factors through f_{B^+} , f_{B^+} is a B_{B^+} -linear isomorphism.

3.3. COROLLARY. For each $M \in M_B^A$, M_{B^+} is a flat as a B-module. In particular, A_{B^+} is B-flat.

Proof. M is written in the form of a directed union $\bigcup M_{\alpha}$ of sub-objects $\{M_{\alpha}\}$ of M, where each M_{α} is a finitely generated B-module [T1, Cor. 2.3]. In fact, write $M = \bigcup V_{\alpha}$, a directed union of finite dimensional right A-subcomodules $\{V_{\alpha}\}$ [Sw, Cor. 2.1.4], and set $M_{\alpha} = V_{\alpha}B$. By (3.1),

each $(M_{\alpha})_{B^+}$ is B_{B^+} -free, hence B-flat. Therefore $M_{B^+} = \bigcup (M_{\alpha})_{B^+}$ is B-flat.

3.4. Theorem. A commutative Hopf algebra is a flat module over every right coideal subalgebra.

Proof. First, we suppose A is finitely generated as an algebra. We may suppose k is algebraically closed. Then any maximal ideal P in A has codimension 1 by the Hilbert Nullstellensatz [B3, Chap. 5, Sect. 3, Prop.1]. Let $p: A \rightarrow A/P = k$ be the quotient map. Since A_{B^+} is B-flat by (3.3), A_{A^+} is B-flat ($A^+ = \operatorname{Ker} \varepsilon$). Define an algebra endomorphism $T_p: A \rightarrow A$ by

$$T_p(a) = \sum a_{(1)} p(a_{(2)}) \qquad (a \in A)$$

(cf. the left translation operator T_g in [W, p. 92]). Then T_p is an automorphism with composite-inverse $T_{p \circ S}$, and takes B to B, and P to A^+ . Therefore A_P is B-flat. By the localization property [B2, Chap. 2, Sect. 3, Prop. 15], A is B-flat.

Next, we suppose B is finitely generated as an algebra. One can write $A = \bigcup A_{\alpha}$, a directed union of finitely generated Hopf subalgebras $\{A_{\alpha}\}$ containing B. Each A_{α} is B-flat, as shown above. Hence A is B-flat.

Finally, we consider the general case. One can write $B = \bigcup B_{\alpha}$, a directed union of finitely generated right coideal subalgebras $\{B_{\alpha}\}$. Since $? \otimes_{B} A \simeq \lim(? \otimes_{B_{\alpha}} A)$ [B1, Sect. 6, Prop. 12], A is B-flat.

- 3.5. COROLLARY. Let A be a commutative Hopf algebra, and $B \subset A$ a right coideal subalgebra. Then the following are equivalent with each other:
 - (a) B is a simple object in M_B^A ;
 - (b) A is faithfully flat as a B-module;
 - (c) A is a projective generator as a B-module;
- (d) Every non-zero object in M_B^A is a projective generator as a B-module.

Proof. (a) \Leftrightarrow (b) \Leftrightarrow (c). This holds by (2.1) and (3.4).

- (d) \Rightarrow (c). Trivial.
- (c) \Rightarrow (d). Suppose (c) and let $0 \neq M \in M_B^A$. Since $B \oplus A$ as B-modules, it follows by (1.5) that

$$M \oplus M \otimes_B A \simeq \overline{M} \otimes A$$
 as B-modules.

Since A is B-projective, M is, too. By the same way as that in the proof of (2.9), it is shown that M is a B-generator.

3.6. Remark. In (3.5), suppose that B is a Hopf subalgebra. Then B satisfies (a) by [Sw, Thm. 4.1.1]. Thus we obtain a simple proof of the following important theorem due to M. Takeuchi:

Theorem [T1, Thm. 3.1; T3, Thm. 5]. A commutative Hopf algebra is a faithfully flat module, or more strongly a projective generator, over every Hopf subalgebra.

This theorem is a contribution to the algebraic theory of quotients of affine group schemes. In fact, as mentioned in [T1, Thm. 5.2(ii)], the weaker assertion "faithfully flat" is an algebraic counterpart of an old result [DG, III, Sect. 3, 7.2a] on such schemes.

REFERENCES

- [B1] N. BOURBAKI, "Algèbre," Chap. 2, Hermann, Paris, 1962.
- [B2] N. BOURBAKI, "Algèbre Commutative," Chaps. 1-4, Masson, Paris, 1985.
- [B3] N. BOURBAKI, "Algèbre Commutative," Chaps. 5, 6, Hermann, Paris, 1964.
- [D] Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11, No. 3 (1983), 243-255.
- [DG] M. DEMAZURE AND P. GABRIEL, "Groupes algébriques," North-Holland, Amsterdam, 1970.
- [DT] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14, No. 5 (1986), 801-817.
- [M] A. MASUOKA, Freeness of Hopf algebras over coideal subalgebras, Comm. Algebra 20, No. 5 (1992), 1353-1373.
- [S1] H.-J. SCHNEIDER, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), 167-195.
- [S2] H.-J. SCHNEIDER, Normal basis and transitivity of crossed products for Hopf algebras, J. Algebra 152 (1992), 289-312.
- [Sw] M. Sweedler, "Hopf Algebras," Benjamin, New York, 1969.
- [T1] M. TAKEUCHI, A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251-270.
- [T2] M. TAKEUCHI, Formal schemes over fields, Comm. Algebra 5, No. 14 (1977), 1483-1528.
- [T3] M. TAKEUCHI, Relative Hopf modules—Equivalences and freeness criteria, J. Algebra 60 (1979), 452-471.
- [W] W. WATERHOUSE, "Introduction to Affine Group Schemes," Graduate Texts in Mathematics, Vol. 66, Springer-Verlag, New York/Heidelberg/Berlin, 1979.