1,709 research outputs found

    The long-term effects of space weather on satellite operations

    Get PDF
    Integrated lifetime radiation damage may cause spacecraft to become more susceptible to operational anomalies by changing material characteristics of electronic components. This study demonstrates and quantifies the impact of these effects by examining the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data Center (NGDC) satellite anomaly database. Energetic particle data from the Geostationary Operational Environmental Satellites (GOES) is used to construct the total lifetime particle exposure a satellite has received at the epoch of an anomaly. These values are compared to the satellite's chronological age and the average exposure per year (calculated over two solar cycles.) The results show that many anomalies occur on satellites that have received a total lifetime high-energy particle exposure that is disproportionate to their age. In particular, 10.8% of all events occurred on satellites that received over two times more 20 to 40 MeV proton lifetime particle exposure than predicted using an average annual mean. This number inflates to 35.2% for 40 to 80 MeV protons and 33.7% for ≥2 MeV electrons. Overall, 73.5% of all anomalies occurred on a spacecraft that had experienced greater than two times the expected particle exposure for one of the eight particle populations used in this study. Simplistically, this means that the long term radiation background exposure matters, and that if the background radiation is elevated during the satellite's lifetime, the satellite is likely to experience more anomalies than satellites that have not been exposed to the elevated environment

    Outflow in global magnetohydrodynamics as a function of a passive inner boundary source

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106972/1/jgra50946.pd

    Broad Absorption Line Variability in Radio-Loud Quasars

    Full text link
    We investigate C IV broad absorption line (BAL) variability within a sample of 46 radio-loud quasars (RLQs), selected from SDSS/FIRST data to include both core-dominated (39) and lobe-dominated (7) objects. The sample consists primarily of high-ionization BAL quasars, and a substantial fraction have large BAL velocities or equivalent widths; their radio luminosities and radio-loudness values span ~2.5 orders of magnitude. We have obtained 34 new Hobby-Eberly Telescope (HET) spectra of 28 BAL RLQs to compare to earlier SDSS data, and we also incorporate archival coverage (primarily dual-epoch SDSS) for a total set of 78 pairs of equivalent width measurements for 46 BAL RLQs, probing rest-frame timescales of ~80-6000 d (median 500 d). In general, only modest changes in the depths of segments of absorption troughs are observed, akin to those seen in prior studies of BAL RQQs. Also similar to previous findings for RQQs, the RLQs studied here are more likely to display BAL variability on longer rest-frame timescales. However, typical values of |Delta_EW| and |Delta_EW|/ are about 40+/-20% lower for BAL RLQs when compared with those of a timescale-matched sample of BAL RQQs. Optical continuum variability is of similar amplitude in BAL RLQs and BAL RQQs; for both RLQs and RQQs, continuum variability tends to be stronger on longer timescales. BAL variability in RLQs does not obviously depend upon their radio luminosities or radio-loudness values, but we do find tentative evidence for greater fractional BAL variability within lobe-dominated RLQs. Enhanced BAL variability within more edge-on (lobe-dominated) RLQs supports some geometrical dependence to the outflow structure.Comment: 27 pages, 16 figures, 6 tables, accepted to MNRAS, full Appendix A at http://www.macalester.edu/~bmille13/balrlqs.htm

    The 2+1 Kepler Problem and Its Quantization

    Get PDF
    We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.Comment: 59 pages, LaTeX2e, 9 eps figure

    A maximum spreading speed for magnetopause reconnection

    Get PDF
    Past observations and numerical modeling find magnetic reconnection to initiate at a localized region and then spread along a current sheet. The rate of spreading has been proposed to be controlled by a number of mechanisms based on the properties within the boundary. At the Earth's magnetopause the spreading speed is also limited by the speed at which a shocked solar wind front can move along the magnetopause boundary. The speed at which a purely north to south rotational discontinuity propagates through the magnetosheath and contacts the magnetopause is measured here using the Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme global magnetohydrodynamics model. The propagation speed along the magnetopause is fastest near the nose of the magnetopause and decreases with distance from the subsolar point. The average propagation speed along the dayside magnetopause is 847 km/s. This is significantly larger than observed rates of reconnection spreading at the magnetopause of 30–40 km/s indicating that, for the observed conditions, the speed of front propagation along the magnetopause does not limit or control the spreading rate of reconnection.Published versio

    Panel Discussion - Management of Eurasian watermilfoil in the United States using native insects: State regulatory and management issues

    Get PDF
    While researchers have evaluated the potential of native insect herbivores to manage nonindigenous aquatic plant species such as Eurasian watermilfoil ( Myriophyllum spicatum L.), the practical matters of regulatory compliance and implementation have been neglected. A panel of aquatic nuisance species program managers from three state natural resource management agencies (Minnesota, Vermont and Washington) discussed their regulatory and policy concerns. In addition, one ecological consultant attempting to market one of the native insects to manage Eurasian watermilfoil added his perspective on the special challenges of distributing a native biological control agent for management of Eurasian watermilfoil

    Combining Generative Models and Fisher Kernels for Object Recognition

    Get PDF
    Learning models for detecting and classifying object categories is a challenging problem in machine vision. While discriminative approaches to learning and classification have, in principle, superior performance, generative approaches provide many useful features, one of which is the ability to naturally establish explicit correspondence between model components and scene features – this, in turn, allows for the handling of missing data and unsupervised learning in clutter. We explore a hybrid generative/discriminative approach using ‘Fisher kernels’ [1] which retains most of the desirable properties of generative methods, while increasing the classification performance through a discriminative setting. Furthermore, we demonstrate how this kernel framework can be used to combine different types of features and models into a single classifier. Our experiments, conducted on a number of popular benchmarks, show strong performance improvements over the corresponding generative approach and are competitive with the best results reported in the literature

    Nowcast model for low‐energy electrons in the inner magnetosphere

    Full text link
    We present the nowcast model for low‐energy (<200 keV) electrons in the inner magnetosphere, which is the version of the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) for electrons. Low‐energy electron fluxes are very important to specify when hazardous satellite surface‐charging phenomena are considered. The presented model provides the low‐energy electron flux at all L shells and at all satellite orbits, when necessary. The model is driven by the real‐time solar wind and interplanetary magnetic field (IMF) parameters with 1 h time shift for propagation to the Earth's magnetopause and by the real time Dst index. Real‐time geostationary GOES 13 or GOES 15 (whenever each is available) data on electron fluxes in three energies, such as 40 keV, 75 keV, and 150 keV, are used for comparison and validation of IMPTAM running online. On average, the model provides quite reasonable agreement with the data; the basic level of the observed fluxes is reproduced. The best agreement between the modeled and the observed fluxes are found for <100 keV electrons. At the same time, not all the peaks and dropouts in the observed electron fluxes are reproduced. For 150 keV electrons, the modeled fluxes are often smaller than the observed ones by an order of magnitude. The normalized root‐mean‐square deviation is found to range from 0.015 to 0.0324. Though these metrics are buoyed by large standard deviations, owing to the dynamic nature of the fluxes, they demonstrate that IMPTAM, on average, predicts the observed fluxes satisfactorily. The computed binary event tables for predicting high flux values within each 1 h window reveal reasonable hit rates being 0.660–0.318 for flux thresholds of 5 ·104–2 ·105 cm−2 s−1 sr−1 keV−1 for 40 keV electrons, 0.739–0.367 for flux thresholds of 3 ·104–1 ·105 cm−2 s−1 sr−1 keV−1 for 75 keV electrons, and 0.485–0.438 for flux thresholds of 3 ·103–3.5 ·103 cm−2 s−1 sr−1 keV−1 for 150 keV electrons but rather small Heidke Skill Scores (0.17 and below). This is the first attempt to model low‐energy electrons in real time at 10 min resolution. The output of this model can serve as an input of electron seed population for real‐time higher‐energy radiation belt modeling.Key PointsNowcast model for low‐energy electronsOnline near‐real‐time comparison to GOES MAGED dataFirst successful model for low‐energy electrons in real timePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110719/1/swe20196.pd

    (2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame

    Full text link
    We formulate and analyze the Hamiltonian dynamics of a pair of massive spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity, isometric to the infinity generated by a single massive but possibly spinning particle. The reduced phase space \Gamma_{red} has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the phase space of a Newtonian two-body system in the centre-of-mass frame, and we find on \Gamma_{red} a canonical chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit. Prospects for quantization are commented on.Comment: 38 pages, REVTeX v3.1 with amsfonts and epsf, 12 eps figures. (v2: Presentational improvement, references added, typos corrected.
    corecore