1,640 research outputs found
Spin Polarized Transport Through a Single-Molecule Magnet: Current-Induced Magnetic Switching
Magnetic switching of a single-molecule magnet (SMM) due to spin-polarized
current is investigated theoretically. The charge transfer between the
electrodes takes place via the lowest unoccupied molecular orbital (LUMO) of
the SMM. Generally, the double occupancy of the LUMO level, and a finite
on-site Coulomb repulsion, is taken into account. Owing to the exchange
interaction between electrons in the LUMO level and the SMM's spin, the latter
can be reversed. The perturbation approach (Fermi golden rule) is applied to
calculate current-voltage characteristics. The influence of Coulomb
interactions on the switching process is also analyzed.Comment: 5 pages with 4 EPS figures; version as accepted for publication in
Phys. Rev. B (more general model introduced
Theory of scanning gate microscopy
A systematic theory of the conductance measurements of non-invasive (weak
probe) scanning gate microscopy is presented that provides an interpretation of
what precisely is being measured. A scattering approach is used to derive
explicit expressions for the first and second order conductance changes due to
the perturbation by the tip potential in terms of the scattering states of the
unperturbed structure. In the case of a quantum point contact, the first order
correction dominates at the conductance steps and vanishes on the plateaus
where the second order term dominates. Both corrections are non-local for a
generic structure. Only in special cases, such as that of a centrally symmetric
quantum point contact in the conductance quantization regime, can the second
order correction be unambiguously related with the local current density. In
the case of an abrupt quantum point contact we are able to obtain analytic
expressions for the scattering eigenfunctions and thus evaluate the resulting
conductance corrections.Comment: 19 pages, 7 figure
Signatures of electron correlations in the transport properties of quantum dots
The transition matrix elements between the correlated and
electron states of a quantum dot are calculated by numerical diagonalization.
They are the central ingredient for the linear and non--linear transport
properties which we compute using a rate equation. The experimentally observed
variations in the heights of the linear conductance peaks can be explained. The
knowledge of the matrix elements as well as the stationary populations of the
states allows to assign the features observed in the non--linear transport
spectroscopy to certain transition and contains valuable information about the
correlated electron states.Comment: 4 pages (revtex,27kB) + 3 figures in one file ziped and uuencoded
(postscript,33kB), to appear in Phys.Rev.B as Rapid Communicatio
A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques
We present a circuit model to describe the electron transport through a
domain wall in a ferromagnetic nanowire. The domain wall is treated as a
coherent 4-terminal device with incoming and outgoing channels of spin up and
down and the spin-dependent scattering in the vicinity of the wall is modelled
using classical resistances. We derive the conductance of the circuit in terms
of general conductance parameters for a domain wall. We then calculate these
conductance parameters for the case of ballistic transport through the domain
wall, and obtain a simple formula for the domain wall magnetoresistance which
gives a result consistent with recent experiments. The spin transfer torque
exerted on a domain wall by a spin-polarized current is calculated using the
circuit model and an estimate of the speed of the resulting wall motion is
made.Comment: 10 pages, 5 figures; submitted to Physical Review
Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes
We study electron transport through a domain wall in a ferromagnetic nanowire
subject to spin-dependent scattering. A scattering matrix formalism is
developed to address both coherent and incoherent transport properties. The
coherent case corresponds to elastic scattering by static defects, which is
dominant at low temperatures, while the incoherent case provides a
phenomenological description of the inelastic scattering present in real
physical systems at room temperature. It is found that disorder scattering
increases the amount of spin-mixing of transmitted electrons, reducing the
adiabaticity. This leads, in the incoherent case, to a reduction of conductance
through the domain wall as compared to a uniformly magnetized region which is
similar to the giant magnetoresistance effect. In the coherent case, a
reduction of weak localization, together with a suppression of spin-reversing
scattering amplitudes, leads to an enhancement of conductance due to the domain
wall in the regime of strong disorder. The total effect of a domain wall on the
conductance of a nanowire is studied by incorporating the disordered regions on
either side of the wall. It is found that spin-dependent scattering in these
regions increases the domain wall magnetoconductance as compared to the effect
found by considering only the scattering inside the wall. This increase is most
dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure
Electron backscattering in a cavity: ballistic and coherent effects
Numerous experimental and theoretical studies have focused on low-dimensional
systems locally perturbed by the biased tip of a scanning force microscope. In
all cases either open or closed weakly gate-tunable nanostructures have been
investigated, such as quantum point contacts, open or closed quantum dots, etc.
We study the behaviour of the conductance of a quantum point contact with a
gradually forming adjacent cavity in series under the influence of a scanning
gate. Here, an initially open quantum point contact system gradually turns into
a closed cavity system. We observe branches and interference fringes known from
quantum point contacts coexisting with irregular conductance fluctuations.
Unlike the branches, the fluctuations cover the entire area of the cavity. In
contrast to previous studies, we observe and investigate branches under the
influence of the confining stadium potential, which is gradually built up. We
find that the branches exist only in the area surrounded by cavity top gates.
As the stadium shrinks, regular fringes originate from tip-induced
constrictions leading to quantized conduction. In addition, we observe arc-like
areas reminiscent of classical electron trajectories in a chaotic cavity. We
also argue that electrons emanating from the quantum point contact spread out
like a fan leaving branch-like regions of enhanced backscattering.Comment: 7 pages, 4 figure
Current induced distortion of a magnetic domain wall
We consider the spin torque induced by a current flowing ballistically
through a magnetic domain wall. In addition to a global pressure in the
direction of the electronic flow, the torque has an internal structure of
comparable magnitude due to the precession of the electrons' spins at the
"Larmor" frequency. As a result, the profile of the domain wall is expected to
get distorted by the current and acquires a periodic sur-structure.Comment: 5 pages, 3 eps figure
Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor
We describe single electron tunneling through molecular structures under the
influence of nano-mechanical excitations. We develop a full quantum mechanical
model, which includes charging effects and dissipation, and apply it to the
vibrating C single electron transistor experiment by Park {\em et al.}
{[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to
be essential to molecular electronic systems. We propose a mechanism to realize
negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
Level Statistics and Localization for Two Interacting Particles in a Random Potential
We consider two particles with a local interaction in a random potential
at a scale (the one particle localization length). A simplified
description is provided by a Gaussian matrix ensemble with a preferential
basis. We define the symmetry breaking parameter
associated to the statistical invariance under change of basis. We show that
the Wigner-Dyson rigidity of the energy levels is maintained up to an energy
. We find that when (the
inverse lifetime of the states of the preferential basis) is smaller than
(the level spacing), and when . This implies that the two-particle localization length first
increases as before eventually behaving as .Comment: 4 pages REVTEX, 4 Figures EPS, UUENCODE
Nuclear spin relaxation probed by a single quantum dot
We present measurements on nuclear spin relaxation probed by a single quantum
dot in a high-mobility electron gas. Current passing through the dot leads to a
spin transfer from the electronic to the nuclear spin system. Applying electron
spin resonance the transfer mechanism can directly be tuned. Additionally, the
dependence of nuclear spin relaxation on the dot gate voltage is observed. We
find electron-nuclear relaxation times of the order of 10 minutes
- …
