4,050 research outputs found
Laser cooling of new atomic and molecular species with ultrafast pulses
We propose a new laser cooling method for atomic species whose level
structure makes traditional laser cooling difficult. For instance, laser
cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while
multielectron atoms need single-frequency light at many widely separated
frequencies. These restrictions can be eased by laser cooling on two-photon
transitions with ultrafast pulse trains. Laser cooling of hydrogen,
antihydrogen, and many other species appears feasible, and extension of the
technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR
Vanishing Fe 3d orbital moments in single-crystalline magnetite
We show detailed magnetic absorption spectroscopy results of an in situ
cleaved high quality single crystal of magnetite. In addition the experimental
setup was carefully optimized to reduce drift, self absorption, and offset
phenomena as far as possible. In strong contradiction to recently published
data, our observed orbital moments are nearly vanishing and the spin moments
are quite close to the integer values proposed by theory. This very important
issue supports the half metallic full spin polarized picture of magnetite.Comment: 7 pages, 4 figure
Анализ выработки запасов нефти из пласта Ю[1]{1-2} Линейного нефтяного месторождения (Томская область)
Rydberg excitation of a single trapped ion
We demonstrate excitation of a single trapped cold Ca ion to
Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm
wavelength. Observed resonances are identified as 3dD to 51 F, 52 F
and 3dD to 64F. We model the lineshape and our results imply a
large state-dependent coupling to the trapping potential. Rydberg ions are of
great interest for future applications in quantum computing and simulation, in
which large dipolar interactions are combined with the superb experimental
control offered by Paul traps.Comment: 4 pages, 3 figure
Displacement field and elastic constants in non-ideal crystals
In this work a periodic crystal with point defects is described in the
framework of linear response theory for broken symmetry states using
correlation functions and Zwanzig-Mori equations. The main results are
microscopic expressions for the elastic constants and for the coarse-grained
density, point-defect density, and displacement field, which are valid in real
crystals, where vacancies and interstitials are present. The coarse-grained
density field differs from the small wave vector limit of the microscopic
density. In the long wavelength limit, we recover the phenomenological
description of elasticity theory including the defect density.Comment: Phys Rev. B, in print (2010
Influence of the 6^1S_0-6^3P_1 Resonance on Continuous Lyman-alpha Generation in Mercury
Continuous coherent radiation in the vacuum-ultraviolet at 122 nm
(Lyman-alpha) can be generated using sum-frequency mixing of three fundamental
laser beams in mercury vapour. One of the fundamental beams is at 254 nm
wavelength, which is close to the 6^1S_0-6^3P_1 resonance in mercury.
Experiments have been performed to investigate the effect of this one-photon
resonance on phasematching, absorption and the nonlinear yield. The efficiency
of continuous Lyman-alpha generation has been improved by a factor of 4.5.Comment: 8 pages, 7 figure
Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen
Cooling antihydrogen atoms is important for future experiments both to test
the fundamental CPT symmetry by high-resolution laser spectroscopy and also to
measure the gravitational acceleration of antimatter. Laser-cooling of
antihydrogen can be done on the strong 1S-2P transition at the wavelength of
Lyman-alpha (121.6nm). A continuous-wave laser at the Lyman-alpha wavelength
based on solid-state fundamental lasers is described. By using a two-photon and
a near one photon resonance a scan across the whole phasematching curve of the
four-wave mixing process is possible. Furthermore the influence of the beam
profile of one fundamental beam on the four-wave mixing process is studied.Comment: 4 pages, 4 figure
- …
