4,478 research outputs found
Analysis of information systems for hydropower operations
The operations of hydropower systems were analyzed with emphasis on water resource management, to determine how aerospace derived information system technologies can increase energy output. Better utilization of water resources was sought through improved reservoir inflow forecasting based on use of hydrometeorologic information systems with new or improved sensors, satellite data relay systems, and use of advanced scheduling techniques for water release. Specific mechanisms for increased energy output were determined, principally the use of more timely and accurate short term (0-7 days) inflow information to reduce spillage caused by unanticipated dynamic high inflow events. The hydrometeorologic models used in predicting inflows were examined to determine the sensitivity of inflow prediction accuracy to the many variables employed in the models, and the results used to establish information system requirements. Sensor and data handling system capabilities were reviewed and compared to the requirements, and an improved information system concept outlined
Critical Currents of Josephson-Coupled Wire Arrays
We calculate the current-voltage characteristics and critical current
I_c^{array} of an array of Josephson-coupled superconducting wires. The array
has two layers, each consisting of a set of parallel wires, arranged at right
angles, such that an overdamped resistively-shunted junction forms wherever two
wires cross. A uniform magnetic field equal to f flux quanta per plaquette is
applied perpendicular to the layers. If f = p/q, where p and q are mutually
prime integers, I_c^{array}(f) is found to have sharp peaks when q is a small
integer. To an excellent approximation, it is found in a square array of n^2
plaquettes, that I_c^{array}(f) \propto (n/q)^{1/2} for sufficiently large n.
This result is interpreted in terms of the commensurability between the array
and the assumed q \times q unit cell of the ground state vortex lattice.Comment: 4 pages, 4 figure
Arp 65 interaction debris: massive HI displacement and star formation
Context: Pre-merger interactions between galaxies can induce significant
changes in the morphologies and kinematics of the stellar and ISM components.
Large amounts of gas and stars are often found to be disturbed or displaced as
tidal debris. This debris then evolves, sometimes forming stars and
occasionally tidal dwarf galaxies. Here we present results from our HI study of
Arp 65, an interacting pair hosting extended HI tidal debris. Aims: In an
effort to understand the evolution of tidal debris produced by interacting
pairs of galaxies, including in situ star and tidal dwarf galaxy formation, we
are mapping HI in a sample of interacting galaxy pairs. The Arp 65 pair is one
of them. Methods: Our resolved HI 21 cm line survey is being carried out using
the Giant Metrewave Radio Telescope (GMRT). We used our HI survey data as well
as available SDSS optical, Spitzer infra-red and GALEX UV data to study the
evolution of the tidal debris and the correlation of HI with the star-forming
regions within it. Results: In Arp 65 we see a high impact pre-merger
interaction involving a pair of massive galaxies (NGC 90 and NGC 93) that have
a stellar mass ratio of ~ 1:3. The interaction, which probably occurred ~ 1.0
-- 2.5 10 yr ago, appears to have displaced a large fraction of
the HI in NGC 90 (including the highest column density HI) beyond its optical
disk. We also find extended ongoing star formation in the outer disk of NGC 90.
In the major star-forming regions, we find the HI column densities to be ~ 4.7
10 cm or lower. But no signature of star formation was
found in the highest column density HI debris, SE of NGC 90. This indicates
conditions within the highest column density HI debris remain hostile to star
formation and it reaffirms that high HI column densities may be a necessary but
not sufficient criterion for star formation.Comment: Accepted in A&
Hot Populations in M87 Globular Clusters
We have obtained HST/STIS far- and near-UV photometry of globular clusters in
four fields in the gE galaxy M87. To a limit of m(FUV) = 25 we detect a total
of 66 globular clusters (GCs) in common with the deep HST optical-band study of
Kundu et al. (1999). Despite strong overlap in V- and I-band properties, the
M87 GCs have UV/optical properties that are distinct from clusters in the Milky
Way and in M31. M87 clusters, especially metal-poor ones, produce larger hot HB
populations than do Milky Way analogues. Cluster mass is probably not a factor
in these distinctions. The most metal-rich M87 GCs in our sample are near Z_sun
and overlap the local E galaxy sample in estimated Mg_2 line indices.
Nonetheless, the clusters produce much more UV light at a given Mg_2, being up
to 1 mag bluer than any gE galaxy in (FUV-V) color. The M87 GCs do not appear
to represent a transition between Milky Way-type clusters and E galaxies. The
differences are in the correct sense if the clusters are significantly older
than the E galaxies. Comparisons with Galactic open clusters indicate that the
hot stars lie on the extreme horizontal branch, rather than being blue
stragglers, and that the EHB becomes well populated for ages > 5 Gyr. We find
that 43 of our UV detections have no optical-band counterparts. Most appear to
be UV-bright background galaxies, seen through M87. Eleven NUV variable sources
detected at only one epoch in the central field are probably classical novae.
[Abridged]Comment: 70 pages, 25 figures (including 4 jpgs), 7 tables. To appear in AJ.
Full resolution version available at
http://www.astro.virginia.edu/~rwo/m87/m87-hotpops.pd
Husimi Maps in Lattices
We build upon previous work that used coherent states as a measurement of the
local phase space and extended the flux operator by adapting the Husimi
projection to produce a vector field called the Husimi map. In this article, we
extend its definition from continuous systems to lattices. This requires making
several adjustments to incorporate effects such as group velocity and multiple
bands. Several phenomena which uniquely occur in lattice systems, like
group-velocity warping and internal Bragg diffraction, are explained and
demonstrated using Husimi maps. We also show that scattering points between
bands and valleys can be identified in the divergence of the Husimi map
The Extended Shapes of Galactic Satellites
We are exploring the extended stellar distributions of Galactic satellite
galaxies and globular clusters. For seven objects studied thus far, the
observed profile departs from a King function at large r, revealing a ``break
population'' of stars. In our sample, the relative density of the ``break''
correlates to the inferred M/L of these objects. We discuss opposing hypotheses
for this trend: (1) Higher M/L objects harbor more extended dark matter halos
that support secondary, bound, stellar ``halos''. (2) The extended populations
around dwarf spheroidals (and some clusters) consist of unbound, extratidal
debris from their parent objects, which are undergoing various degrees of tidal
disruption. In this scenario, higher M/L ratios reflect higher degrees of
virial non-equilibrium in the parent objects, thus invalidating a precept
underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of
Galaxies and Their Halo
Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays
We study the dependence of the transport properties of square Josephson
Junctions arrays with the direction of the applied dc current, both
experimentally and numerically. We present computational simulations of
current-voltage curves at finite temperatures for a single vortex in the array
(), and experimental measurements in
arrays under a low magnetic field corresponding to . We find that
the transverse voltage vanishes only in the directions of maximum symmetry of
the square lattice: the [10] and [01] direction (parallel bias) and the [11]
direction (diagonal bias). For orientations different than the symmetry
directions, we find a finite transverse voltage which depends strongly on the
angle of the current. We find that vortex motion is pinned in the [10]
direction (), meaning that the voltage response is insensitive to small
changes in the orientation of the current near . We call this
phenomenon orientational pinning. This leads to a finite transverse critical
current for a bias at and to a transverse voltage for a bias at
. On the other hand, for diagonal bias in the [11] direction the
behavior is highly unstable against small variations of , leading to a
rapid change from zero transverse voltage to a large transverse voltage within
a few degrees. This last behavior is in good agreement with our measurements in
arrays with a quasi-diagonal current drive.Comment: 9 pages, 9 figure
The Different Structures of the Two Classes of Starless Cores
We describe a model for the thermal and dynamical equilibrium of starless
cores that includes the radiative transfer of the gas and dust and simple CO
chemistry. The model shows that the structure and behavior of the cores is
significantly different depending on whether the central density is either
above or below about 10^5 cm-3. This density is significant as the critical
density for gas cooling by gas-dust collisions and also as the critical density
for dynamical stability, given the typical properties of the starless cores.
The starless cores thus divide into two classes that we refer to as thermally
super-critical and thermally sub-critical.This two-class distinction allows an
improved interpretation of the different observational data of starless cores
within a single model.Comment: ApJ in pres
The magnetic field structure in CTA 102 from high-resolution mm-VLBI observations during the flaring state in 2016-2017
CONTEXT: Investigating the magnetic field structure in the innermost regions of relativistic jets is fundamental to understanding the crucial physical processes giving rise to jet formation, as well as to their extraordinary radiation output up to γ-ray energies.
AIMS: We study the magnetic field structure of the quasar CTA 102 with 3 and 7 mm VLBI polarimetric observations, reaching an unprecedented resolution (∼50 μas). We also investigate the variability and physical processes occurring in the source during the observing period, which coincides with a very active state of the source over the entire electromagnetic spectrum.
METHODS: We perform the Faraday rotation analysis using 3 and 7 mm data and we compare the obtained rotation measure (RM) map with the polarization evolution in 7 mm VLBA images. We study the kinematics and variability at 7 mm and infer the physical parameters associated with variability. From the analysis of γ-ray and X-ray data, we compute a minimum Doppler factor value required to explain the observed high-energy emission.
RESULTS: Faraday rotation analysis shows a gradient in RM with a maximum value of ∼6 × 104⁴ rad m⁻² and intrinsic electric vector position angles (EVPAs) oriented around the centroid of the core, suggesting the presence of large-scale helical magnetic fields. Such a magnetic field structure is also visible in 7 mm images when a new superluminal component is crossing the core region. The 7 mm EVPA orientation is different when the component is exiting the core or crossing a stationary feature at ∼0.1 mas. The interaction between the superluminal component and a recollimation shock at ∼0.1 mas could have triggered the multi-wavelength flares. The variability Doppler factor associated with such an interaction is large enough to explain the high-energy emission and the remarkable optical flare occurred very close in time.Accepted manuscrip
- …
