582 research outputs found

    Comparison of Magnetic Resonance Imaging-Compatible Optical Detectors for In-Magnet Tissue Spectroscopy: Photodiodes Versus Silicon Photomultipliers

    Get PDF
    Tissue spectroscopy inside the magnetic resonance imaging (MRI) system adds a significant value by measuring fast vascular hemoglobin responses or completing spectroscopic identification of diagnostically relevant molecules. Advances in this type of spectroscopy instrumentation have largely focused on fiber coupling into and out of the MRI; however, nonmagnetic detectors can now be placed inside the scanner with signal amplification performed remotely to the high field environment for optimized light detection. In this study, the two possible detector options, such as silicon photodiodes (PD) and silicon photomultipliers (SiPM), were systematically examined for dynamic range and wavelength performance. Results show that PDs offer 108 (160 dB) dynamic range with sensitivity down to 1 pW, whereas SiPMs have 107 (140 dB) dynamic range and sensitivity down to 10 pW. A second major difference is the spectral sensitivity of the two detectors. Here, wavelengths in the 940 nm range are efficiently captured by PDs (but not SiPMs), likely making them the superior choice for broadband spectroscopy guided by MRI

    Contrast-Detail Analysis Characterizing Diffuse Optical Fluorescence Tomography Image Reconstruction

    Get PDF
    Contrast-detail analysis is used to evaluate the imaging performance of diffuse optical fluorescence tomography (DOFT), characterizing spatial resolution limits, signal-to-noise limits, and the trade-off between object contrast and size. Reconstructed images of fluorescence yield from simulated noisy data were used to determine the contrast-to-noise ratio (CNR). A threshold of CNR=3 was used to approximate a lowest acceptable noise level in the image, as a surrogate measure for human detection of objects. For objects 0.5 cm inside the edge of a simulated tissue region, the smallest diameter that met this criteria was approximately 1.7 mm, regardless of contrast level, and test field diameter had little impact on this limit. Object depth had substantial impact on object CNR, leading to a limit of 4 mm for objects near the center of a 51-mm test field and 8.5 mm for an 86-mm test field. Similarly, large objects near the edge of both test fields required a minimum contrast of 50% to achieve acceptable image CNR. The minimum contrast for large, centered objects ranged between 50% and 100%. Contrast-detail analysis using human detection of lower contrast limits provides fundamentally important information about the performance of reconstruction algorithms, and can be used to compare imaging performance of different systems

    Characterizing Accuracy of Total Hemoglobin Recovery Using Contrast-Detail Analysis in 3D Image-Guided Near Infrared Spectroscopy with the Boundary Element Method

    Get PDF
    The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm

    Critical Computational Aspects of Near Infrared Circular Tomographic Imaging: Analysis of Measurement Number, Mesh Resolution and Reconstruction Basis

    Get PDF
    The image resolution and contrast in Near-Infrared (NIR) tomographic image reconstruction are affected by parameters such as the number of boundary measurements, the mesh resolution in the forward calculation and the reconstruction basis. Increasing the number of measurements tends to make the sensitivity of the domain more uniform reducing the hypersensitivity at the boundary. Using singular-value decomposition (SVD) and reconstructed images, it is shown that the numbers of 16 or 24 fibers are sufficient for imaging the 2D circular domain for the case of 1% noise in the data. The number of useful singular values increases as the logarithm of the number of measurements. For this 2D reconstruction problem, given a computational limit of 10 sec per iteration, leads to choice of forward mesh with 1785 nodes and reconstruction basis of 30×30 elements. In a three-dimensional (3D) NIR imaging problem, using a single plane of data can provide useful images if the anomaly to be reconstructed is within the measurement plane. However, if the location of the anomaly is not known, 3D data collection strategies are very important. Further the quantitative accuracy of the reconstructed anomaly increased approximately from 15% to 89% as the anomaly is moved from the centre to boundary, respectively. The data supports the exclusion of out of plane measurements may be valid for 3D NIR imaging

    A Coupled Finite Element-Boundary Element Method for Modeling Diffusion Equation in 3d Multi-Modality Optical Imaging

    Get PDF
    Three dimensional image reconstruction for multi-modality optical spectroscopy systems needs computationally efficient forward solvers with minimum meshing complexity, while allowing the flexibility to apply spatial constraints. Existing models based on the finite element method (FEM) require full 3D volume meshing to incorporate constraints related to anatomical structure via techniques such as regularization. Alternate approaches such as the boundary element method (BEM) require only surface discretization but assume homogeneous or piece-wise constant domains that can be limiting. Here, a coupled finite element-boundary element method (coupled FE-BEM) approach is demonstrated for modeling light diffusion in 3D, which uses surfaces to model exterior tissues with BEM and a small number of volume nodes to model interior tissues with FEM. Such a coupled FE-BEM technique combines strengths of FEM and BEM by assuming homogeneous outer tissue regions and heterogeneous inner tissue regions. Results with FE-BEM show agreement with existing numerical models, having RMS differences of less than 0.5 for the logarithm of intensity and 2.5 degrees for phase of frequency domain boundary data. The coupled FE-BEM approach can model heterogeneity using a fraction of the volume nodes (4-22%) required by conventional FEM techniques. Comparisons of computational times showed that the coupled FE-BEM was faster than stand-alone FEM when the ratio of the number of surface to volume nodes in the mesh (Ns/Nv) was less than 20% and was comparable to stand-alone BEM ( ± 10%)

    Methodology Development for Three-Dimensional MR-Guided Near Infrared Spectroscopy of Breast Tumors

    Get PDF
    Combined Magnetic Resonance (MR) and Near Infrared Spectroscopy (NIRS) has been proposed as a unique method to quantify hemodynamics, water content, and cellular size and packing density of breast tumors, as these tissue constituents can be quantified with increased resolution and overlaid on the structural features identified by the MR. However, the choices in how to reconstruct and visualize this information can have a dramatic impact on the feasibility of implementing this modality in the clinic. This is especially true in 3 dimensions, as there is often limited optical sampling of the breast tissue, and methods need to accurately reflect the tissue composition. In this paper, the implementation and display of fully 3D MR image-guided NIRS is outlined and demonstrated using in vivo data from three healthy women and a volunteer undergoing neoadjuvant chemotherapy. Additionally, a display feature presented here scales the transparency of the optical images to the sensitivity of the measurements, providing a logical way to incorporate partial volume sets of optical images onto the MR volume. These concepts are demonstrated with 3D data sets using Volview software online

    Comparison of imaging geometries for diffuse optical tomography of tissue

    Get PDF
    Images produced in six different geometries with diffuse optical tomography simulations of tissue have been compared using a finite element-based algorithm with iterative refinement provided by the NewtonRaphson approach. The source-detector arrangements studied include (i) fan-beam tomography, (ii) full reflectance and transmittance tomography, as well as (iii) sub-surface imaging, where each of these three were examined in a circular and a flat slab geometry. The algorithm can provide quantitatively accurate results for all of the tomographic geometries investigated under certain circumstances. For example, quantitatively accurate results occur with sub-surface imaging only when the object to be imaged is fully contained within the diffuse projections. In general the diffuse projections must sample all regions around the target to be characterized in order for the algorithm to recover quantitatively accurate results. Not only is it important to sample the whole space, but maximal angular sampling is required for optimal image reconstruction. Geometries which do not maximize the possible sampling angles cause more noise artifact in the reconstructed images. Preliminary simulations using a mesh of the human brain confirm that optimal images are produced from circularly symmetric source-detector distributions, but that quantitatively accurate images can be reconstructed even with. a sub-surface imaging, although spatial resolution is modest. © 1999 Optical Society of America

    Receiver Operating Characteristic and Location Analysis of Simulated Near-Infrared Tomography Images

    Get PDF
    Receiver operating characteristic (ROC) analysis was performed on simulated near-infrared tomography images, using both human observer and contrast-to-noise ratio (CNR) computational assessment, for application in breast cancer imaging. In the analysis, a nonparametric approach was applied for estimating the ROC curves. Human observer detection of objects had superior capability to localize the presence of heterogeneities when the objects were small with high contrast, with a minimum detectable threshold of CNR near 3.0 to 3.3 in the images. Human observers were able to detect heterogeneities in the images below a size limit of 4 mm, yet could not accurately find the location of these objects when they were below 10 mm diameter. For large objects, the lower limit of a detectable contrast limit was near 10% increase relative to the background. The results also indicate that iterations of the nonlinear reconstruction algorithm beyond 4 did not significantly improve the human detection ability, and degraded the overall localization ability for the objects in the image, predominantly by increasing the noise in the background. Interobserver variance performance in detecting objects in these images was low, suggesting that because of the low spatial resolution, detection tasks with NIR tomography is likely consistent between human observers

    Fluorescence Tomography Characterization for Sub-Surface Imaging with Protoporphyrin IX

    Get PDF
    Optical imaging of fluorescent objects embedded in a tissue simulating medium was characterized using non-contact based approaches to fluorescence remittance imaging (FRI) and sub-surface fluorescence diffuse optical tomography (FDOT). Using Protoporphyrin IX as a fluorescent agent, experiments were performed on tissue phantoms comprised of typical in-vivo tumor to normal tissue contrast ratios, ranging from 3.5:1 up to 10:1. It was found that tomographic imaging was able to recover interior inclusions with high contrast relative to the background; however, simple planar fluorescence imaging provided a superior contrast to noise ratio. Overall, FRI performed optimally when the object was located on or close to the surface and, perhaps most importantly, FDOT was able to recover specific depth information about the location of embedded regions. The results indicate that an optimal system for localizing embedded fluorescent regions should combine fluorescence reflectance imaging for high sensitivity and sub-surface tomography for depth detection, thereby allowing more accurate localization in all three directions within the tissue

    Multichannel Diffuse Optical Raman Tomography for Bone Characterization In Vivo: a Phantom Study

    Get PDF
    Raman spectroscopy is used to gather information on the mineral and organic components of bone tissue to analyze their composition. By measuring the Raman signal of bone through spatially offset Raman spectroscopy the health of the bone can be determined. We’ve customized a system with 8 collection channels that consist of individual fibers, which are coupled to separate spectrometers and cooled CCDs. This parallel detection system was used to scan gelatin phantoms with Teflon inclusions of two sizes. Raman signals were decoupled from the autofluorescence background using channel specific polynomial fitting. Images with high contrast to background ratios of Raman yield and accurate spatial resolution were recovered using a model-based diffuse tomography approach
    • …
    corecore