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Critical computational aspects of near infrared 
circular tomographic imaging: Analysis of 
measurement number, mesh resolution and 

reconstruction basis  
Phaneendra K. Yalavarthy§, Hamid Dehghani§,†, Brian W. Pogue§ and Keith D. Paulsen§ 

§Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 
†School of Physics, University of Exeter, Exeter, UK EX4 4QL 

Phaneendra.K.Yalavarthy@dartmouth.edu, Brian.W.Pogue@dartmouth.edu 

Abstract:  The image resolution and contrast in Near-Infrared (NIR) 
tomographic image reconstruction are affected by parameters such as the 
number of boundary measurements, the mesh resolution in the forward 
calculation and the reconstruction basis. Increasing the number of 
measurements tends to make the sensitivity of the domain more uniform 
reducing the hypersensitivity at the boundary. Using singular-value 
decomposition (SVD) and reconstructed images, it is shown that the 
numbers of 16 or 24 fibers are sufficient for imaging the 2D circular domain 
for the case of 1% noise in the data. The number of useful singular values 
increases as the logarithm of the number of measurements. For this 2D 
reconstruction problem, given a computational limit of 10 sec per iteration, 
leads to choice of forward mesh with 1785 nodes and reconstruction basis of 
30×30 elements. In a three-dimensional (3D) NIR imaging problem, using a 
single plane of data can provide useful images if the anomaly to be 
reconstructed is within the measurement plane. However, if the location of 
the anomaly is not known, 3D data collection strategies are very important. 
Further the quantitative accuracy of the reconstructed anomaly increased 
approximately from 15% to 89% as the anomaly is moved from the centre 
to boundary, respectively. The data supports the exclusion of out of plane 
measurements may be valid for 3D NIR imaging. 

©2006 Optical Society of America 

OCIS codes: (170.0170) Medical optics and biotechnology; (100.3190) Inverse problems; 
(170.3660) Light propagation in tissues; (170.4580) Optical diagnostics for medicine; 
(170.7050) Turbid media. 
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1. Introduction 

In the recent years, there has been a heightened interest in near-infra-red (NIR) optical 
tomography, for applications such as diagnostic breast cancer imaging [1-3] and for brain 
function assay [1, 4, 5].  In NIR tomography, the aim is to reconstruct interior optical 
properties of the tissue under investigation from a finite, yet incomplete set of transmission 
measurements taken at the tissue external boundaries. The reconstructed optical properties can 
give clinically useful information regarding tissue physiology and state, such as chromophore 
concentration and oxygen saturation. Typically, the optical source light used for excitation in 
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NIR studies is delivered through optical fibers and the transmitted light is also collected 
through the same or additional fibers which are in contact with the external surface of the 
tissue. Using these measurements, distributions of wavelength dependent absorption and/or 
scattering coefficients of the tissue are reconstructed using a model-based iterative algorithm. 
NIR studies have the advantage of being non-invasive, non-hazardous and can therefore be 
applied repeatedly to investigate functional changes in tissue over a prolonged time. 

The dominance of light scattering in tissue at NIR wavelengths makes optical tomography 
inherently more difficult in the sense that light becomes diffuse within millimeters of travel, 
reducing the resolution of the reconstructed images. The image reconstruction procedure (i.e. 
the inverse problem) is non-linear, ill-posed and ill-conditioned [6] and to improve image 
reconstruction, the number of measurements are generally increased, to increase the amount 
of independent information. However due to experimental set-up constraints, such as the light 
collection strategy, source and detector fiber size and the imaging domain geometry, the total 
number of boundary measurements that can be taken from is often quite limited. In addition, 
there are constraints on the data acquisition and computation time that need to be considered 
for the specific application in which NIR light is used. 

There have been some limited studies [7-11] on optimization of the fiber positions and 
measurements to get the best possible image resolution and contrast in NIR tomography. 
More specifically, Culver et. al [11] have showed that singular value decomposition (SVD) 
analysis of the weight matrix (also known as the Jacobian or sensitivity matrix) can be used to 
optimize detector placement in the reflectance and direct transmittance geometries of a 
homogeneous slab medium, and indicated that this could be extended to arbitrary geometries 
with heterogeneous tissue volumes. However, there remain many unknowns regarding the 
appropriate number of measurements required to get a sufficiently good image given the 
practical constraints of measurement number and image recovery algorithm, which is the 
subject of this paper. Furthermore, few studies have specifically investigated the effect of 
mesh resolution in both the forward and inverse calculations and very little is known about the 
quantitative increase in accuracy which is a direct result of mesh resolution and appropriate 
reconstruction bases. This work is an attempt to answer questions regarding the limited 
increase in number of measurements, more specifically benefits from the increased amount of 
information as well as investigating aspects that will have effects on image reconstruction 
procedure and resolution as well as the contrast of the reconstructed image. 

In the present work, both a two dimensional (2D) circular domain and a three dimensional 
(3D) cylindrical geometry are investigated since most investigations to date have used either 
of these geometries for system and algorithm evaluation. Initially the effect of mesh resolution 
is investigated in the forward problem by comparing the Jacobian cross-section for various 
resolution 2D meshes to show improvements in numerical accuracy. Next the effect of 
increasing the number of measurements upon the resulting reconstructed image using 
singular-value analysis is investigated. Results regarding the optimized reconstruction basis 
are presented for the given 2D model, and the impact in the Root Mean Square (RMS) error of 
increased spatial sensitivity is presented as a function of increasing number of measurements. 
Finally a case-to-case analysis is shown by increasing the number of measurements in image 
reconstruction procedure and comparing the underlying image errors within the reconstructed 
images. 

Since 3D problems have more degrees of freedom (unknown parameters), they are highly 
ill-determined as compared to the 2D problem.  But NIR optical tomography utilizes the data 
from the 3D tissue volumes and therefore should be treated as a 3D imaging problem. Since 
light propagation in tissue is physically spread in all directions, 3D models are known to be an 
accurate prediction of the light fluence, whereas 2D models are simple yet inaccurate at 
predicting the interior fluence distributions [4, 12-17]. In order to further advance NIR optical 
tomography into a suitable and accurate clinical imaging modality, it is important to develop 
fully 3D imaging tools, yet, the major challenge in this task is to determine how to acquire 
large data sets which overcome the inherent limitation of the 3D problem being ill-determined 
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[18]. That is, to improve image reconstruction quality in 3D, the number of measurements can 
be increased as mentioned in 2D case, even here these measurements are quite limited.  

For the chosen 3D cylindrical geometry, for example, acquiring experimental data from 
three different planes of fiber setup improves the reconstructed image of the entire domain as 
compared to one single plane of data, as there are greater numbers of measurements providing 
a larger set of sampling of the entire volume of interest. There are many strategies to increase 
measurement number and it is not clear which present the best improvement in the final 
image. Specifically, this work examines effects of different measurement strategies for 3D 
NIR tomography by presenting and quantifying the underlying effects of using a single plane 
of tomographic data as compared to three planes of tomographic data. Within the latter case, 
this work also presents, quantifies and discusses the benefits, limits and losses due to the 
measurement of in-plane data as compared to out-of plane data and will compare and contrast 
these data collection geometries from the prospective of gain and loss in the reconstructed 
image quality and respective computation time. 

2. Methods 

Conventional numerical methods for the forward calculations in NIR imaging use the Finite 
Element Method (FEM), which is considered as a flexible and accurate approach to modeling 
heterogeneous domains with arbitrary boundaries. Light transport in scattering tissue can be 
accurately described by the Diffusion Approximation (DA) to the Radiative Transfer Equation 
(RTE) [19]: 

0- . ( ) ( , ) ( ) ( , ) ( , )a

i
r r r r q r

c

ωκ ω μ ω ω⎛ ⎞∇ ∇Φ + + Φ =⎜ ⎟
⎝ ⎠

                  (1) 

where ( , )r ωΦ is the photon density at position r and modulation frequency ω  (100 MHz in 

this work), and κ = 1/[3(μa + μs
/)], the diffusion coefficient, where μa and μs

/ are the 
probabilities per unit length of absorption and transport scattering, respectively, and 

0 ( , )q r ω is an isotropic source term. The Robin (Type III) boundary condition is used which 

best describes the light interaction from a scattering medium to the external air boundary [20]. 
The calculated boundary data values with a frequency domain system are the amplitude and 
phase of the signal, from which the diffusion and absorption coefficients can be 
simultaneously reconstructed.   

For the inverse problem, a small change in boundary data is related to a small change in 
optical properties through the Jacobian matrix of values. The Jacobian matrix for 
reconstructing both the unknowns using two different data-types is calculated using the 
Adjoint-method [21], and has dimensions of (2×S×D) by (2×N), where S and D are the 
number of sources and detectors corresponding to each source respectively. N represents the 
number of nodes in the mesh used in the forward calculation. Here the Jacobian maps the 
changes in log amplitude and phase (2xSxD) to both absorption and diffusion changes at each 
node of the FEM model (2xN). The Jacobian which maps the change in detected signal to 
image space has four parts: 
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In all our analysis, only the J2 section is considered (dimension of (S×D) by N), which maps a 
small change in the absorption coefficient to a small change in measured log intensity of the 
signal. Since all kernels of the complete Jacobian show similar results, the discussion is 
limited to the results of J2, and shall henceforth be referred to as J.  

In the reconstruction procedure presented, a modified Levenberg-Marquadt algorithm is 
used for calculating the estimates of μa, which is an iterative procedure [10] solving:  
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[Δμa] = [JTJ + λI]-1. JTb       (3) 

Here [Δμa] is an update vector for the absorption coefficient, I is the identity matrix and λ is a 
regularization parameter. Also, b = [y - F(μa)], where y is the measured (or simulated) 
heterogeneous boundary data and F(μa) is the forward data for the current estimate of μa. In 
all of the presented work using simulated data, 1% noise was added to the amplitude, which is 
a typical noise observed in experimental data [2].  

For the 2D analysis a circular model with a diameter of 86 mm centered at (0, 0) and with 
homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1.0 mm-1 is considered. The light 
collection/delivery fibers are arranged in a circular equally spaced fashion, where one fiber is 
used as the source while all other fibers are used as detectors, to give ‘P’ number of 
measurements (where P= M(M-1), where M is number of fibers). The source is a Gaussian 
source of Full Width Half Maximum (FWHM) of 3mm, and it is placed one transport 
scattering length within the external boundary.  
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Z = 10 

Z = 15

86 mm

layer -I 

layer-III 
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Z = 0
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Z = -1010
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m
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Fig. 1. Schematic diagram of data collection geometry used for the 3D cylindrical model. 

For the 3D analysis, a cylindrical medium with a diameter of 86 mm having height of 100 
mm centered at (0, 0, 0), with homogeneous optical properties of μa = 0.01 mm-1 and μs

/ = 1 
mm-1 is used (Fig. 1). The light collection/delivery fibers are arranged in a circular and 
equally spaced fashion and are in either a single plane of 16 fibers or 3 planes of 16 fibers per 
plane, totaling 48 fibers. Specifically three different strategies for data collection are 
considered: 

(a). Single layer data: The 16 fibers are arranged in a circular and equally spaced fashion in a 
single Layer-I (Fig. 1), where one fiber is used at a time as the source while all other fibers are 
used as detectors, to give 240 (16x15) amplitude measurements. 

(b). Three layers of in-plane data: The 48 fibers are arranged in a circular equally spaced 
fashion in all three layers (Layers-I, II & III in Fig. 1), giving 16 fibers per plane, where one 
fiber is used at a time as the source while only those fibers in the same “source fiber layer” are 
used as detectors, to give 720 (3x16x15) amplitude measurements. 

(c). Three layers of out-of-plane: Same as above, except when one fiber is used at a time as 
the source, all other fibers in all three planes are used as detectors. This leads to 2256 (48x47) 
amplitude measurements. 

For the image reconstruction process, an iterative update to the Jacobian matrix was 
computed, after each successive image estimation. At each iteration, the objective function 
was evaluated to estimate the projection error. The reconstruction procedure was then stopped 
when the projection error decreased by less than 3%. 
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S 

D 

 
Fig. 2. The sensitivity (Jacobian) contour plot of log amplitude and μa for a source (S) and 
detector (D), which are diagonally opposite to each other as shown, calculated on a circular 
mesh of 9664 nodes. 

2.1. 2D Mesh Resolution 

In FEM the domain is divided into finite discretized sub-domains wherein the numerical 
accuracy and stability depends highly on this discretization (mesh resolution). Since the 
Jacobian represents the sensitivity of the detected signal to a small change in optical 
properties, the numerical accuracy of this value is crucial component of the image 
reconstruction problem, to study the effect of mesh resolution in 2D case, we choose different 
resolution meshes (with number nodes ranging from 150 to 4617 nodes) along with a high-
resolution mesh of 9664 nodes for calculation of Jacobian. The Jacobian with a diagonally 
opposite source and detector is used, as shown in Fig. 2, from which the RMS error is 
calculated for each mesh with respect to the high-resolution mesh. The RMS error is 
calculated by interpolating the Jacobian of each mesh unto a uniformly distributed grid, 
allowing direct comparison of each result. Since the Jacobian represents the sensitivity of the 
detected signal to a small change in optical properties, the numerical accuracy of this value is 
a crucial component of the image reconstruction problem. Here the highest resolution mesh 
provides the most accurate and numerically stable solution, therefore the calculated RMS 
error indicates the numerical accuracy of each lower resolution mesh. The computation time 
taken for calculation of Jacobian and forward data is also noted as a function of mesh 
resolution. All the computations were carried out on Pentium-IV 2.5 GHz processor with 2 
GB of RAM. 

2.2. Singular-Value (SV) analysis 

Singular-Value (SV) analysis for the Jacobian matrix is explained in detail elsewhere [10]. 
Using SV-analysis, the Jacobian is decomposed into: 

 
 J = USVT                                                          (4) 

where, U & V are orthonormal matrices containing the eigenvectors of J and S is a diagonal 
matrix containing the singular values of J. Vectors of U and V correspond to the modes in the 
detection space and image space, respectively, while the magnitude of the singular values in S 
represents the importance of the corresponding eigenvectors in U and V. More nonzero 
singular values indicating more modes are effective in between the two spaces, which bring 
more detail and improve the resolution in the space. There are normally P nonzero singular 
values in the diagonal matrix and these values are sorted in decreasing order. Typically only 
those singular values above the noise level (in this study, 1 % noise in amplitude) are used, as 
they contain the only useful information in the matrix. Thus, it is possible to determine 
whether increasing the number of measurements gives rise to an increase in the number of 
useful singular values, which indicates improvement in the recovered images. 
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In 2D, this analysis was applied to two separate cases: (1) a homogeneous case with optical 
properties as given before, and (2) a heterogeneous case which mimics breast optical 
properties [22], with properties of fibro-glandular layer being μa = 0.003 mm-1 and μs

/ = 0.95 
mm-1 and having diameter of 66 mm and fatty layer surrounding it having μa = 0.006 mm-1 

and μs
/ = 1.1 mm-1 with a thickness of 20mm. The number of useful singular values above the 

noise level were calculated as the number of measurements was increased. The mesh that was 
found to have an optimum resolution from the previous analysis of the Jacobian (Sec. 2.1) was 
used for these analysis. For both these cases, the percentage of useful measurements with 
respect to total number of measurements was calculated as:  

 
Useful number of singular values

Useful measurements (in %) = x100    
Total number of singular values

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (5) 

Additionally, the effect of mesh resolution was studied for its impact on the number of 
independent boundary data points with an increase in number of measurements by calculating 
the rank of the Jacobian, which is defined as the maximum number of linearly independent 
rows/columns of a given matrix. As each row of the Jacobian indicates each measurement, the 
rank of the Jacobian indicates the total number of independent measurements. 

Image reconstruction consists of two separate, yet equally important parts; the forward 
model and the inverse model. For the forward model, the mesh used in FEM needs to be such 
that to ensure numerical accuracy, as already discussed. For the inverse problem, however, the 
goal is to reduce the number of unknowns for the iterative update by the use of a 
reconstruction basis [23]. Therefore it is important to investigate the effects of various 
reconstruction basis degrees of freedom on the reconstruction. Various reconstruction basis 
can be used, such as second mesh basis [24], pixel basis [23] or adaptive [25, 26] . With this 
goal, a reconstruction basis was optimized for the given 2D problem by looking at the number 
of useful singular values for various pixel (reconstruction) basis. A linear pixel basis of having 
100 (10 by 10) elements to 1600 (40 by 40) elements was used and the Jacobian was mapped 
to this basis for the analysis. 

Table 1. The RMS error (with respect to the fine mesh of 9664 nodes) in the Jacobian cross-section from center to 
boundary, (indicated by dashed line in Fig. 2) at y = 0 mm. This is tabulated as a function of mesh resolution, or 
number of nodes in the mesh. Last two rows show the computation time taken for calculation the Jacobian and 

Forward data for 16 source-detector pairs (240 measurements). For the fine mesh of 9664 nodes the computation time 
for Jacobian and Forward data is 98.1 sec and 28 sec respectively.  

Nodes 150 425 1360 1785 2683 3047 3569 4617 
RMS error 60.56 27.84 5.06 4.84 2.57 2.15 1.85 1.07 
Jacobian 

Computation 
Time (in Sec.) 

1.1 2.5 7.8 10.1 15.2 17.8 20.8 38.1 

Forward data  
Computation 
Time (in Sec.) 

0.1 0.3 0.9 1.2 1.9 2.2 2.6 9.8 

2.3. Reconstruction examples 

In order to understand the effect of increasing the number of measurements on total sensitivity 
for a given 2D model the magnitude of the Jacobian was examined as a function of number of 
measurements. To achieve this, the horizontal cross-section of the whole Jacobian was 
plotted, which was summed up over all measurements, from center to boundary, and 
examined as the number of measurements increased. Since the Jacobian provides relative 
sensitivity, a cross-section plot was normalized in each case with respect to its magnitude at 
the center of the model and calculated as a function of number of measurements (56 to 4032). 
For the 3D model, the cross-section of the total Jacobian was normalized with respect to its 
magnitude at the center of the model (as in the 2D case), for each case of the three different 
data collection strategies. Finally, for the 2D model, only the absorption coefficient was 
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reconstructed with an increasing number of measurements of an object with absorption 
inhomogeneity at various positions of domain using log of amplitude data. A circular 
absorption anomaly of diameter of 10 mm was used having a contrast of 2:1 compared to its 
background. We used the optimal forward mesh along with optimal reconstruction basis for 
the reconstruction procedure. A total of 2 positions of absorption inhomogeneity were 
considered with it center at (x,y) of (0, 0), and (30, 0) for various number of measurements 
starting from 56 to 4032. 

 
  

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

Fig. 3. Singular value analysis of homogeneous and heterogeneous 2D circular models. (a). 
Plot of the useful singular values versus number of measurements. (b). Plot of percentage of 
useful measurements versus the total number of measurements. (c). Plot of the Rank versus 
number of measurements is shown for a range of mesh nodes. (d). Plot of the number of useful 
singular values versus number of measurements is shown, for various reconstruction bases. 

 
For the 3D case, a spherical absorption anomaly of diameter of 15 mm was assumed 

having a contrast of 2:1 compared to its background. A total of 3 positions of absorption 
inhomogeneity were considered with its center at x, y and z of (0,0,0), (30,0,0) and (30,0,10). 
The anomalies were reconstructed using the noise added data (1% in amplitude) simulated 
from the three different fiber location strategies. Full Width at Half-Maximum (FWHM) was 
measured for each of the peaks in the X-Y and Z-Y planes as well as the total computation 
time for reconstruction process. 

Table 2. The number of useful measurements above the 1% expected noise level, is shown for the 2D circular and 3D 
cylindrical models, having 16 source and detector fibers with one or three planes of data collection.  The two upper 
rows have only 1 plane of collection, whereas the 2nd last row has 3 planes of collection but not between the planes, 

and the last row has 3 planes of data collection with complete out of plane measurements. 

 Number of 
Unknowns 

Number of 
Measureme

nts 

Number of 
Useful Singular 

values 

Useful 
measurements 

(%) 

Magnitude of largest 
singular value 

2D 1785 240 91 37.92 796.4 

3D 1layer 20163 240 107 44.58 117.1 

3D 3layer in-
plane 20163 720 269 37.36 164 

3D 3layer out-
of-plane 20163 2256 328 14.54 304.6 

3 Results 

Figure 2 shows a sensitivity plot of log amplitude and the absorption coefficient using a 2D 
mesh with 9664 nodes for a source and detector which are diagonally opposite to each other. 
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Table-1 shows the RMS error with respect to the high resolution mesh in the horizontal cross-
section (as indicated by the dotted line in Fig. 2) using the method described earlier. The RMS 
error calculated here was also calculated along different cross-sections of the model and a 
similar trend was seen. The mesh with 1785 nodes was found to have an RMS error of less 
then 5% as compared to the finest mesh. 

 
Fig. 4. Comparison of Jacobian cross-section with respect to measurement number. (a). The 
horizontal cross-sectional plot of the sum of 2D circular Jacobian matrix values, from center to 
the boundary at y = 0 mm. (b) The normalized sum of 2D circular Jacobian matrix values, with 
respect to the value at the center (at x = 0 mm, y = 0 mm). The legend gives number of 
measurements associated with each plot.  

The 2D mesh with 1785 nodes was used for the calculation of the Jacobian and the 
expected noise level in the amplitude measurements was assumed to be 1%. For both the 
heterogeneous and homogeneous 2D cases, the number of useful singular values above the 
noise level were calculated, and the results are shown in Fig. 3(a). Figure 3(b) is a bar chart 
showing useful measurements in percentage [given by Eq. (5)] for each set of measurements. 
Figure 3(c) is a plot of the rank of the Jacobian versus the total number of measurements for 
meshes having different resolution starting from 150 to 3569 nodes versus number of 
measurements. The Jacobian calculated is also mapped onto a reconstruction (pixel) basis 
ranging from 10 × 10 to 40 × 40. The number of useful singular values as function of pixel 
basis elements, for each set of measurements, are plotted in Fig. 3(d). Finally, for the 2D case, 
Fig. 4 shows the total sensitivity distribution at the mid-axis cross-section, as a function of the 
number of measurements.  Table 2 shows the number of useful singular values of the 3D 
model Jacobian which are above the noise level (1%) for the three different strategies, and 
indicates the effective number of measurements which will be contributing to the 
reconstructed image space and quality. The number of useful singular values is higher for the 
three layer out-of-plane strategy. The useful percentage of measurements is higher for the 3D 
single plane of data, whereas the condition number is very high for the 3D three-layer out of 
plane case. Similar data is also included using the 2D circular geometry for comparison 
purposes, with 240 measurements and the same corresponding optical properties as the 3D 
model. 

The plots of the 3D Jacobian magnitude as normalized to the value at the center of the 
model are shown in Fig. 5. These plots shows that, all the three strategies of data collection in 
3D are hypersensitive (in X & Y direction) at the boundary. Moreover this is pronounced for 
the 3D single-plane case. In the Z-direction (not shown) it was found that, as expected that, 
the sensitivity decreases as the position moves from centre to boundary for all the three cases.  
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Z= 0 mm Z= 5 mm 

  
Z= 10 mm Z= 15 mm 

Fig. 5. The normalized cross-section in the X-Y plane, showing the total sensitivity across the 
dotted line in Fig. 2, from x= 0 mm to x = 43 mm (center to boundary) at Y = 0 mm normalized 
with respect to the sensitivity at the origin, (i.e. X = 0, Y = 0 & Z = 0 mm). 

 

Original μa 56 240 552 992 

 
1560 2256 3080 4032  

 

 
 

 
Fig. 6. The reconstruction of the μa distribution, using noisy simulated data of log amplitude, 
for a circular object with an absorbing inhomogeneity at the center. Different numbers of 
measurements were used as denoted above each image, ranging from 56 up to 4032 data points.  
The forward mesh was 1785 nodes and the pixel basis consisted of 30x30 elements. The 
original μa distribution is shown as the first image. 

The 2D reconstruction of a circular object with a centralized absorption anomaly of 
diameter of 10mm using different number of measurements, along with original μa 
distribution, is shown in Fig. 6. The contrast of the inhomogeneity to background is 2:1 and 
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for these reconstructions a pixel basis of 30 x 30 elements is used, with a forward mesh 
consisting of 1785 nodes. Figure 7 shows the plot of logarithm of rms error in the horizontal 
cross-section (as sown by dotted line in Fig. 6) as a function of measurement number. The 
legend of the figure gives the position of the inhomogeneity (diameter of 10mm).  

Table 3 summarizes the results of the 3D reconstruction. Figure 8(a) shows the 
reconstructed absorption coefficient distributions for a spherical absorption inhomogeneity 
(diameter of 15 mm) located at (0, 0, 0) with a contrast of 2:1 to background, using the data 
collected from the three strategies. Figure 8(b) shows the results of the same effort with a 
spherical inhomogeneity located near to the boundary (30, 0, 0). The results show that the 
quantitative values of the anomaly increases as the anomaly is moved from centre to boundary 
in X & Y direction. The anomaly for this location is reconstructed with 89% quantitative 
accuracy compared to the 15% accuracy for central location. Finally the reconstructed 
absorption coefficient distribution for a spherical absorption inhomogeneity (diameter - 15 
mm), which is centered at (30, 0, 10) are shown in Fig. 8(c) and it can be seen that single layer 
case reconstructed the anomaly in the wrong location. Here, both the in-plane and out-of-
plane strategies are able to give up to 84% quantitative accuracy (Table 3). 
 

 
Fig. 7. A plot of logarithm of rms error in the horizontal cross-section of μa at y = 0 (as shown 

in original μa distribution of Fig. 6) versus number of measurements for various positions of an 
absorption inhomogeneity.  These calculations used 1785 nodes in the mesh of the forward 
problem and a pixel basis of 30x30 elements in the reconstruction.  

4 Discussion 

The decrease in the RMS error for the horizontal cross-section of the 2D Jacobian for a given 
source-detector (diagonally opposite each other) for a mesh greater than 1500 nodes as 
compared to 9664 nodes (Table-1) is below 5%. It should be noted that the other kernels of 
the Jacobian, for example J3 ( θ

κ
∂
∂

), showed better accuracy (2%) when the mesh had 1785 

nodes or greater. As with many iterative reconstruction problems, optical tomography requires 
repeated forward calculations and re-computation of the Jacobian, thereby increasing mesh 
resolution which further implies increase in computational time, which is clearly evident from 
last two rows of Table 1. A computation limit of 10 seconds per iteration, lead to a choice of 
mesh resolution with 1785 nodes for the forward problem in two-dimensional case, and 
extending this same level of resolution to 3D would require nearly 80,000 nodes, which is 
near the limit of what can be done computationally.  Thus much of the 2D study presented 
here was run at the level of 1785 nodes.  Since the computation of the Jacobian using the FEM 
relies on the discretization of the domain and the accuracy of the numerical model depends on  
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Table 3. The computation time and accuracy of the 3D reconstruction is shown for the three 
different data collection strategies, along with three different locations of the anomaly for each. 

 

Strategy 
Position of 

anomaly 
(original) 

Iterati
ons 

Total 
Computation 

time (s) 

Quantitative 
accuracy (%) of 

the reconstructed 
anomaly 

FWHM 
along X-

axis (mm) 

FWHM 
along 
Z-axis 
(mm) 

(0,0,0) 11 3179 15% 16.1 25.2 
(30,0,0) 14 4046 89% 17.2 23.3 3D: 1layer 

(30,0,10) 10 2890 - - - 
(0,0,0) 14 8022 14% 16.5 25.3 

(30,0,0) 14 8022 80% 13.1 18.7 
3D 3layer in-

plane 
(30,0,10) 12 6876 110% 11.2 18.6 

(0,0,0) 6 10926 11% 23.7 24.1 
(30,0,0) 9 16389 78% 13.6 18.9 3D 3layer 

out-of-plane 
(30,0,10) 8 14568 84% 13.2 18.7 

 
 

 
3D 1-plane 3D 3layer: inplane 3D 3layer: out of 

plane 
 

(a) 

   

0.012 

 
0.008 

(b) 

   

0.019 

 
0.008 

(c) 

  

0.022 

 
0.008 

Fig. 8. The reconstructed absorption coefficient distribution for the cylindrical object with a 
spherical absorption inhomogeneity (diameter of 15mm and contrast 2:1 with respect to 
background) located at x, y and z locations (a) (0,0,0), (b) (30,0,0) and (c) (30,0,10).  The three 
columns of images show the results achieved with the three different data collection schemes.   
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this discretization and the associated integration of the shape functions, the resolution of the 
mesh and the associated optical properties will affect these results. For example, if the 
absorption coefficient is much smaller, then lower resolution meshes may be adequate, as the 
problem becomes more energy conserving, whereas for a higher absorption or scattering 
problem, a higher resolution mesh will be needed to ensure numerical accuracy within each 
FEM element for a lossy problem. Note also that for spectral reconstruction [3] with six 
wavelengths data, each iteration takes about 30 sec for 1785 nodes mesh. 

For a heterogeneous or homogeneous 2D case, number of useful singular values, which 
are above the noise level (1% in amplitude) showed similar trends and behavior with 
increasing numbers of measurements, as evident from Fig. 3(a). Further, the percentage of 
useful measurements (useful singular values) drops exponentially as the number of 
measurements is increased, Fig. 3(b). It is worth noting that for a heterogeneous model, since 
light propagation becomes more complex, and in this case more diffusive, the total number of 
useful measurements is slightly lower than that of homogeneous model. In this work, useful 
singular values are defined as the ones which are above noise level (1%). This is used only for 
optimizing the parameters used in the reconstruction procedure, but in the actual 
reconstruction procedure, regularization is used to reduce the condition number.  

Next, the effect of the 2D mesh resolution was investigated, for it’s impact upon the 
number of independent available measurements. From Fig. 3(c), it is evident that if the 
degrees of freedom (mesh resolution) in the forward problem is less than the total number of 
measurements, then increasing the number of measurements does not increase the number of 
independent measurements (i.e. the rank), since the rank is predominantly restricted by the 
number of nodes in the mesh. For example, given a system from which only 240 
measurements are available, any mesh which has a resolution of 240 nodes or more will give 
the same number of independent measurements. Therefore no additional measurements can be 
gained in terms of independent information by increasing the mesh resolution. Given a 2D 
mesh of 1785 nodes, for example, no considerable gain in independent data can be obtained 
when the number of measurements are increased above 1560 (40 source and detectors). At 
this point, it will be worth remembering that, in real time there is a physical constraint on 
number of measurements, because of the physical geometry and fiber size. To take an 
example, for a circular test phantom of 86 mm diameter and fiber of 6 mm diameter, no more 
than 40 fibers (which corresponds to 1560 measurements) can be arranged around the outer 
boundary of domain.  However this issue becomes more important perhaps for non-contact 
imaging systems in which the number of source-detector locations can be arbitrarily large. 

Using a 2D mesh of 1785 nodes, the effect of an increase in the reconstruction (regular 
pixel) basis resolution upon reconstruction was investigated [Fig. 3(d)]. An increase in pixel 
basis elements increases the number of useful singular values, but there is no significant 
improvement in the pixel basis from 30×30 (900 elements) to 40×40 (1600 elements). This is 
very interesting, since one would assume that fewer degrees of freedom for the inverse 
problem would produce a better solution. But although the problem may become better posed, 
the rank will be similar to that shown in Fig. 3(d). However, these results indicate the best 
possible resolution obtainable is by using the 40 x 40 pixel basis and again these results will 
be dependent on the physical problem dimension and level of complexity. Figure 4 shows that 
increasing the number of measurements for a 2D model increases the sensitivity of the 
problem, as evident from magnitude plot of the Jacobian (calculated from 1785 nodes mesh). 
Also shown in Fig. 4 is a normalized plot, relative to the central value, and indicates that for 
fewer number of measurements, the sensitivity is maximal near the boundary and lower at the 
center, as expected. By increasing the number of measurements, eventually the 
hypersensitivity near to the boundary reduced and the sensitivity became uniform regardless 
of distance from boundary. Finally, it is observed that increasing the number of measurements 
above 552 (24 sources and detectors) did not result in any further improvement in the 
sensitivity distribution.   

For the 3D model, Table 2 shows that three layers of out-of-plane measurements yields a 
higher number of useful singular values, but the useful percentage of the total measurements 
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was below 15%. An increase in number of measurements means more data acquisition time 
and more computation time. Non-linear iterative image reconstruction procedures in NIR 
imaging use repeated calculation of the forward data. Therefore increasing the number of 
sources and measurements substantially increases the computation time. In comparing the 
three layer in-plane and three layer out-of-plane data collection strategies, having more than 
three times the measurements in the latter case improves the number of useful singular values 
only by 22%. The improvement in the number of useful singular values is not significant if the 
data acquisition time is considered as well as the computation time. The magnitude of the 
singular values indicates the importance of that eigenvector in the image space, which is 
directly related to reconstructed image contrast that can be achieved. To compare the 
magnitude of the largest singular value, even though it is at its highest for the three layer out-
of-plane strategy, it should be noted that only 3 of the singular values are above 164 
(magnitude of largest singular value of 3D 3layer-in-plane), indicating that there would not be 
dramatic differences in the reconstructed image contrast in both these cases. If the magnitude 
of largest singular value in 2D and 3D are compared, in 2D the magnitude is higher, whereas 
the number of useful singular values are lower than 3D, indicating that the modes that 
contribute to image space are fewer and the quality of the reconstructed image in 2D will be 
lower than 3D. Even though magnitude of the singular values dictate the contrast, the singular 
vectors associated with it will tend to affect the reconstructed image quality. The magnitude of 
the largest singular value in the 3D 3layer cases are the same because of the smoothness of the 
singular vectors in the case of 3D 3 layer: out-of-plane, the reconstructed image quality is 
better than the rest cases (Fig. 8). The FWHM analysis also confirms this. 

It should be noted that there is always a trade-off between image quality and computation 
time. Therefore having out-of-plane data increases the image resolution, but taking into 
consideration the overall computation time, this improvement is perhaps not so significant. 
The computation time per iteration is high in the case of out-of-plane data (computation time 
per iteration: 2D problem – 70 sec; single-layer – 289 sec; three layer: in-plane – 573 sec; 
three layer: out-of-plane – 1821 sec).  

Figure 5 indicates that for the 3D model with a single measurement plane case, the total 
sensitivity is higher near the boundary, as compared to the three plane data case and by 
increasing the number of measurements the sensitivity near the boundary is decreased.  The 
results show that although the sensitivity is still higher at the boundary with three planes of 
data acquired, there is no significant difference in the sensitivity pattern observed between 
three layer in-plane or out-of-plane strategies.  

Since only one component of the full Jacobian matrix, J2 in Eq. (2), has been examined 
here, images have also been reconstructed for μa using log amplitude data for a 2D forward 
mesh of 1785 nodes and a reconstruction basis 30 by 30 pixel basis. Noisy simulated data 
were generated for various radial positions of the absorption inhomogeneity with a contrast of 
2, relative to the background and having a diameter of 10 mm. The log of RMS error was 
calculated as the difference in the original and the reconstructed horizontal cross-sections of 
each image (Fig. 6) as a function of number of measurements and these were plotted in Fig. 7. 
The results show that, as evident from Fig. 7, although there is a decrease in the RMS error as 
the number of measurements is increased, the improvement in the reconstructed images is not 
significant for measurements greater than 552 (corresponding to 24 fibers). However, for a 
central anomaly, the RMS error continued to decrease with increasing number of 
measurements, whereas for an anomaly near the boundary the RMS error does not improve 
more than 0.5% with respect to 552 measurements. 

To study the effect of data collection strategies on the 3D reconstructed image, the FWHM 
(Full Width at Half Maximum) of the peaks for all the reconstructed cases have been 
calculated and compared, Table 3. As the inhomogeneity moves from the centre towards the 
boundary, the FWHM reduces for both of the three layer cases and it remains approximately 
the same for the single layer case. For example, when the inhomogeneity is placed at (30,0,0), 
Fig. 8(b), the FWHM (in the X-cross section) values for single layer is 17.2mm and for the 
three–layers in-plane and out-of-plane strategies is 13.1mm and 13.6mm respectively. It is 
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evident from the reconstruction examples that the quantitative values of the inhomogeneities 
increase as the object moves from the centre to boundary, which is in close match with 
Jacobian analysis above. Reconstruction of absorption using single layer data, is not accurate, 
in a case where the anomaly is not presented in the imaging plane, such a case results are 
presented in Fig. 8(c). In this case, single-layer reconstructed image shows the inhomogeneity 
at a false position (reconstructed: (30,0,0); actual: (30,0,10)). Most of the 3D NIR studies 
indicate that, the quantitative accuracy of the images will be poor due the partial volume 
effect in three dimensions[13,16,17] and these quantification can be greatly improved by the 
use of more sophisticated regularization and the addition of penalty terms into Eq. (3).  

5 Conclusions 

In this investigation, the mesh resolution and numerical accuracy in the 2D and 3D forward 
problems were examined, using specific data-collection geometries. Several choices such as 
domain size, optical properties and anomaly position and size were kept fixed, relative to 
typical breast cancer imaging situations. It was shown that increasing the number of 
measurements increases the total amount of information available, and these specifically 
enhance the recovery of the central region of the model, regardless of dimensionality. Further, 
by increasing the number of measurements, the rank of the problem (i.e. amount of 
independent useful information) may not increase if the degrees of freedom (i.e. number of 
nodes in the mesh) are low. Reconstruction basis plays an important role in the inverse 
problem and it has been found that a pixel basis of 30 × 30 is optimal for a typical breast 
imaging problem.  

More specifically for a 3D imaging problem, this work has shown the benefits and 
drawbacks of multi-plane data collection as well as the use of in-plane versus out-of-plane 
data measurements strategies. It has been shown that the use of single-plane of data in a 3D 
model is perhaps adequate, in terms of image quality, computation time and data collection 
time, if the anomaly being imaged is within the plane of measurements. However, if prior 
information such as plane of interest is not known, it has been shown that multi-plane data is 
crucial. The use of in-plane and out-of-plane data has been addressed and is shown that 
although the use of out-of-plane data provides more independent and useful information for 
image reconstruction, the magnitude of this additional information does not provide enough 
advantages worth the data acquisition and image computation time. 

Finally it is worth noting that the 3D study has been limited to 16 source/detection fibers 
per plane. The addition of more measurement fibers and/or investigation of a different image 
reconstruction basis, such as those performed for the 2D problem can be easily extended for 
the presented 3D problem. The technique and analysis described here can be used as a tool to 
improve resolution and contrast, given prior information about the domain being imaged. This 
specific study was undertaken to better understand the parameters and capabilities of existing 
breast imaging system at Dartmouth and to focus on software improvements which may 
increase its recovery of lesion information. 
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